TABLE OF CONTENTS

HANDBOOK OF POLYMER SOLUTION THERMODYNAMICS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>PREFACE</td>
<td>i</td>
</tr>
<tr>
<td>Chapter 1: INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>A. OBJECTIVES OF THE HANDBOOK OF POLYMER SOLUTION THERMODYNAMICS</td>
<td>1</td>
</tr>
<tr>
<td>Chapter 2: FUNDAMENTALS OF POLYMER SOLUTION THERMODYNAMICS</td>
<td>3</td>
</tr>
<tr>
<td>A. PURE POLYMER PVT BEHAVIOR</td>
<td>3</td>
</tr>
<tr>
<td>B. PHASE EQUILIBRIA THERMODYNAMICS</td>
<td>4</td>
</tr>
<tr>
<td>C. MODELING APPROACHES TO POLYMER SOLUTION THERMODYNAMICS</td>
<td>6</td>
</tr>
<tr>
<td>D. LATTICE MODELS</td>
<td>8</td>
</tr>
<tr>
<td>1. Flory-Huggins Model</td>
<td>8</td>
</tr>
<tr>
<td>2. Solubility Parameters and the Flory-Huggins Model</td>
<td>9</td>
</tr>
<tr>
<td>3. Modifications of the Flory-Huggins Model</td>
<td>11</td>
</tr>
<tr>
<td>4. Sanchez-Lacombe Equation of State</td>
<td>12</td>
</tr>
<tr>
<td>5. Panayiotou-Vera Equation of State</td>
<td>13</td>
</tr>
<tr>
<td>6. Kumar Equation of State</td>
<td>13</td>
</tr>
<tr>
<td>7. High-Danner Equation of State</td>
<td>14</td>
</tr>
<tr>
<td>8. Oishi-Prausnitz Activity Coefficient Model</td>
<td>15</td>
</tr>
<tr>
<td>E. VAN DER WAALS MODELS</td>
<td>16</td>
</tr>
<tr>
<td>1. Flory Equation of State</td>
<td>17</td>
</tr>
<tr>
<td>2. Chen, Fredenslund, and Rasmussen Equation of State</td>
<td>18</td>
</tr>
<tr>
<td>F. LIQUID-LIQUID EQUILIBRIA OF POLYMER SOLUTIONS</td>
<td>18</td>
</tr>
<tr>
<td>1. Thermodynamics of Liquid-Liquid Equilibria</td>
<td>18</td>
</tr>
<tr>
<td>2. Types of Liquid-Liquid Equilibria</td>
<td>20</td>
</tr>
<tr>
<td>4. Computation of Liquid-Liquid Equilibria Compositions</td>
<td>26</td>
</tr>
<tr>
<td>5. Parameter Estimation from Liquid-Liquid Equilibria Data</td>
<td>26</td>
</tr>
<tr>
<td>6. Sample Correlations of Liquid-Liquid Equilibria Data</td>
<td>27</td>
</tr>
<tr>
<td>G. EFFECT OF POLYDISPERSSION</td>
<td>29</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS (Continued)

Chapter 3: RECOMMENDED PROCEDURES .. 31

A. SELECTION OF MODELS ... 31
 1. Correlation of Pure Polymer PVT Behavior 31
 2. Prediction of Vapor-Liquid Equilibria 32

B. PROCEDURE: METHOD FOR ESTIMATING THE SPECIFIC VOLUME
 OF A PURE POLYMER LIQUID .. 38
 1. Method ... 38
 2. Procedure .. 38
 3. Limitations and Reliability ... 39
 4. Comments ... 39
 5. Literature Sources ... 39
 6. Example ... 39

C. PROCEDURE: OISHI-PRAUSNITZ METHOD FOR ESTIMATING
 THE ACTIVITY COEFFICIENTS OF SOLVENTS IN
 POLYMER SOLUTIONS .. 42
 1. Method ... 42
 2. Procedure .. 45
 3. Limitations and Reliability ... 46
 4. Comments ... 47
 5. Literature Sources ... 47
 6. Example ... 48

D. PROCEDURE: CHEN-FREDENSLOM-RASMUSSEN EQUATION
 OF STATE FOR ESTIMATING THE ACTIVITY COEFFICIENTS
 OF SOLVENTS IN POLYMER SOLUTIONS 64
 1. Method ... 64
 2. Procedure .. 68
 3. Limitations and Reliability ... 69
 4. Literature Source .. 69
 5. Example ... 69

E. PROCEDURE: HIGH-DANNER EQUATION OF STATE FOR
 ESTIMATING THE ACTIVITY COEFFICIENT OF A SOLVENT
 IN A POLYMER SOLUTION ... 73
 1. Method ... 73
 2. Procedure .. 77
 3. Limitations and Reliability ... 79
 4. Literature Sources .. 79
 5. Example ... 79
TABLE OF CONTENTS (Continued)

F. PROCEDURE: FLORY-HUGGINS CORRELATION FOR VAPOR-LIQUID
 EQUILIBRIA OF POLYMER SOLVENT SYSTEMS 82
 1. Method ... 82
 2. Procedure .. 83
 3. Limitations and Reliability 83
 4. Literature Source 83
 5. Example ... 83

Chapter 4: POLYMER DATA BASE 85

A. INTRODUCTION ... 85

B. EXPERIMENTAL METHODS 85
 1. Inverse Gas Chromatography (IGC) 86
 2. Piezoelectric Sorption (PZS) 86
 3. Differential Vapor Pressure (DVP) 87
 4. Gravimetric Sorption (GS) 87
 5. Light Scattering (LS) 88
 6. Ultracentrifuge (UC) 90
 7. Turbidimetry (TB) and Light Scattering Turbidimetry (LST) 91
 8. Microanalytical (MA) 92
 9. Ultraviolet Spectrometry (UVS) and Infrared Spectrometry (IRS) 92
 10. Size Exclusion Chromatography (SEC) 92

C. DATA REDUCTION PROCEDURES 92
 1. Pure Polymer PVT Data 93
 2. Finite Dilution Flory Chi Parameter 94
 3. Infinite Dilution Flory Chi Parameter 95
 4. Differential Vapor Pressure, Gravimetric Sorption, and
 Piezoelectric Sorption Methods 96
 5. Gas Chromatograph Data at Infinite Dilution 99
 6. Henry’s Law Constant 102
 7. Osmotic Pressure Data 102

D. LISTING OF SYSTEMS INCLUDED IN DATA BASES 103
 1. Pure Polymer PVT Data 103
 2. Finite Concentration VLE Data 104
 3. Infinite Dilution VLE Data 106
 4. Binary Liquid-Liquid Equilibria Data 117
 5. Ternary Liquid-Liquid Equilibria Data 118
TABLE OF CONTENTS (Concluded)

Chapter 5: COMPUTER PROGRAMS

A. PHASE EQUILIBRIA CALCULATIONS - POLYPROG ... 121
 1. Installation ... 121
 2. Features ... 121
 3. Tutorial Session 124

B. DATA RETRIEVAL - POLYDATA ... 129
 1. Installation ... 129
 2. Features ... 130
 3. Tutorial Session 132

C. FILE FORMATS USED BY POLYDATA ... 133
 1. Pure Polymers .. 133
 2. Infinitely Dilute Solvent Weight Fraction Activity
 Coefficients (WFAC) 135
 3. Finite Concentration Solvent Weight Fraction Activity
 Coefficients (WFAC) 136
 4. Binary LLE ... 137
 5. Ternary LLE ... 138
 6. Bibliographic Sources 139
 7. Polymer Synonyms 140

Chapter 6: APPENDICES

A. GLOSSARY OF TERMS ... 141

B. STANDARD POLYMER ABBREVIATIONS ... 142

C. NOMENCLATURE ... 147

D. UNITS AND CONVERSION FACTORS .. 150
 1. Units and Symbols 150
 2. Prefixes ... 153
 3. Usage Format .. 155
 4. Conversion ... 156

E. TEXT REFERENCES ... 161

F. DATA REFERENCES ... 166