Contents

Part I Introduction

CHAPTER 1 What Is the Finite Element-Method? 3
 Introduction 3
 1.1 Definition and Description of the FEM 3
 1.2 How the FEM Works 5
 1.3 An Illustrative Problem 11
 1.4 Some Applications to Real Problems 17
 1.5 Benefits from Using the FEM 29
 1.6 Historical Development 30
 References 32

CHAPTER 2 Outline of Problems Treated in This Book 36
 Introduction 36
 2.1 One-, Two-, and Three-Dimensional Considerations 36
 2.2 Part II: Basic Concepts 37
 2.3 Part III: One-Dimensional Problems 40
 2.4 Part IV: Two-Dimensional Problems 45

Part II Basic Concepts

CHAPTER 3 Foundations I: Trial-Solution Methods 53
 Introduction 53
 3.1 The Trial-Solution Procedure: Three Principal Operations 53
 3.1.1 Construction of a Trial Solution 54
 3.1.2 Application of an Optimizing Criterion 55

xiii
3.2 An Illustrative Problem: Description 58
3.3 Construction of a Trial Solution for the Illustrative Problem 59
3.4 Four Approximate Solutions Using Methods of Weighted Residuals
 3.4.1 The Collocation Method 66
 3.4.2 The Subdomain Method 67
 3.4.3 The Least-Squares Method 68
 3.4.4 The Galerkin Method 71
3.5 A Fifth Approximate Solution Using the Ritz Variational Method 75
3.6 Estimation of Accuracy of the Solutions 78
 3.6.1 Comparison of the Five Solutions 78
 3.6.2 Convergence of a Sequence of Approximate Solutions 79
3.7 Choice of the Galerkin Method for This Book 87
Exercises 89
References 94

CHAPTER 4 Foundations II: A General 12-Step Trial-Solution Procedure 96
Introduction 96
4.1 Outline of the 12-Step Procedure 96
4.2 An Illustrative Problem 98
4.3 Steps 1 through 6: Theoretical Development 98
4.4 Steps 7 through 12: Numerical Computation 108
4.5 Boundary Conditions: Terminology and Concepts 118
Reference 127

CHAPTER 5 The Element Concept 128
Introduction 128
5.1 An Illustrative Problem 129
5.2 A One-Element Solution: The Element Equations 129
5.3 A Two-Element Solution: Assembly of Element Equations
 5.3.1 Equivalent Formulation of the Problem in Terms of Elements 139
 5.3.2 Steps 1 through 6: Theoretical Development for Each Element 142
 5.3.3 Steps 7 through 12: Numerical Computation, Including Assembly of Separate Element Equations 147
 5.3.4 Comments on Assembly—and a Rational Notation 155
5.4 A Four-Element Solution: The Typical Element
 5.4.1 Steps 1 through 6: Theoretical Development for a Typical Element 157
 5.4.2 Steps 7 through 12: Numerical Computation 161
5.5 An Eight-Element Solution 173
5.6 Mesh Refinement and Conditions for Convergence 185
5.7 Random Node and Element Numbering: A General Assembly Rule 189
5.8 Element Trial Functions: Terminology and Concepts 195
5.9 Summary of the 12-Step Procedure Using the Element Concept 197
Exercises 198
References 203

Part III One-Dimensional Problems: Theory, Programming and Applications

CHAPTER 6 Physical Applications for 1-D Boundary-Value Problems 207

6.1 Heat Conduction 207
6.1.1 1-D Heat Flow 207
6.1.2 1-D Model of 2-D Heat Flow 210
6.2 Elastic Rod 212
6.3 Cable Deflection 213
6.4 Electrostatic Field 215
6.5 A General Formulation for All Applications 216
6.6 A Well-Posed Problem 219
Reference 220

CHAPTER 7 1-D Boundary-Value Problems: Linear Elements 221

7.1 Statement of the Problem 221
7.2 Derivation of Element Equations: Theoretical Development (Steps 1 through 6) 222
7.3 Implementation into a Computer Program: Numerical Computation (Steps 7 through 12) 237
7.3.1 Preprocessing, Solution, and Postprocessing 237
7.3.2 The UNAFEM Program 240
7.4 Application of UNAFEM to a Heat Conduction Problem 257
7.4.1 Statement of the Problem 257
7.4.2 One-Element Test of UNAFEM 258
7.4.3 Dealing with Discontinuous Physical Properties 263
7.4.4 UNAFEM Analysis 265
7.4.5 Are the Results Reasonable? 269
7.5 Application of UNAFEM to a Cable Deflection Problem 272
7.5.1 Statement of the Problem 272
7.5.2 Dealing with Discontinuous Loads 273
7.5.3 UNAFEM Analysis 276
7.5.4 Are the Results Reasonable? 281
7.6 The Physical Meaning of Interelement Boundary Conditions 282
7.7 Some Practical Guidelines 289
Exercises 291
References 295
CHAPTER 8 1-D Boundary-Value Problems: Higher-Order Elements 296

Introduction 296
8.1 The First Three Steps for Deriving the Element Equations 296
8.2 The 1-D C^0-Quadratic Element: Direct Approach 297
8.3 The 1-D C^0-Quadratic Isoparametric Element 305
8.3.1 Theoretical Development 305
8.3.2 Implementation into the UNAFEM Program 327
8.3.3 Application of UNAFEM 332
8.4 The 1-D C^0-Cubic Isoparametric Element 340
8.4.1 Theoretical Development 340
8.4.2 Implementation into the UNAFEM Program 351
8.4.3 Application of UNAFEM 351
8.5 The 1-D C^0-Quartic Isoparametric Element 358
8.5.1 Theoretical Development 358
8.5.2 Implementation into the UNAFEM Program 362
8.5.3 Application of UNAFEM 363
8.6 The 1-D C^1-Cubic Element 363
Exercises 370
References 373

CHAPTER 9 Relative Performance of the Different Elements 376

Introduction 376
9.1 Rate of Convergence 376
9.2 Ordinary and Superconvergent Points 384
9.3 Comparison of the Elements 389
9.4 Behavior Near Singularities 392
9.5 Local Mesh Refinement 396
Exercises 400
References 400

CHAPTER 10 1-D Eigenproblems 402

Introduction 402
10.1 Mathematical and Physical Description of the Problem 402
10.2 Derivation of Element Equations 406
10.3 The Algebraic Eigenproblem 410
10.3.1 Some Mathematical Properties 410
10.3.2 Different Techniques for Solution 414
10.3.3 Available Computer Algorithms for Big and Small Problems 417
10.4 Implementation into the UNAFEM Program 419
10.5 Application to Free Vibration of a Flexible Cable 422
10.6 Application to a Harmonic Oscillator in Quantum Mechanics 429
Exercises 437
References 443
CHAPTER 11 1-D Initial-Boundary-Value Problems: Diffusion 446

Introduction 446

11.1 Mathematical and Physical Description of the Problem 446
11.1.1 The Initial-Value Problem 446
11.1.2 A Mixed Initial-Boundary-Value Problem 449
11.1.3 Transient Heat Conduction and Other Physical Applications 450

11.2 Derivation of Element Equations 452
11.2.1 Separation of Space and Time 452
11.2.2 Steps 1 through 6: Theoretical Development 454

11.3 Time-Stepping Methods for Solving Initial-Value Problems 457
11.3.1 Some Basic Concepts 457
11.3.2 Finite Difference Methods 459
11.3.3 Weighted Residual Finite Element Methods 467
11.3.4 Comparison of the Performance of Different Methods 469

11.4 Implementation into the UNAFEM Program 482
11.5 Application to a Transient Heat Conduction Problem 493
Exercises 506
References 513

CHAPTER 12 1-D Initial-Boundary-Value Problems: Dynamics 516

Introduction 516

12.1 Derivation of Element and System Equations 518
12.2 Direct Integration 520
12.2.1 The Central Difference Method 521
12.2.2 The Houbolt Method 523
12.2.3 The Wilson Method 525
12.2.4 The Newmark Method 526

12.3 Mode Superposition 531
12.4 Harmonic Analysis 536
Exercises 540
References 541

Part IV Two-Dimensional Problems: Theory, Programming, and Applications

CHAPTER 13 2-D Boundary-Value Problems 547

Introduction 547

13.1 Description of the Problem 547
13.1.1 Mathematical Description 547
13.1.2 Anisotropic Materials 552
13.1.3 Physical Applications 557

13.2 Derivation of Element Equations: Steps 1 through 3 561
13.3 Triangular Elements Theoretical Development
(Steps 4 through 6) 565
13.3.1 The C°-Linear Triangle 565
13.3.2 The C°-Quadratic Isoparametric Triangle 583
13.4 Quadrilateral Elements: Theoretical Development
(Steps 4 through 6) 609
13.4.1 The C°-Linear Isoparametric Quadrilateral 612
13.4.2 The C°-Quadratic Isoparametric Quadrilateral 620
13.5 Implementation into the UNAFEM Program 630
13.6 Mesh Construction Guidelines 641
13.6.1 Individual Elements 641
13.6.2 Combining Elements 641
13.6.3 Modeling Errors 643
13.6.4 Local Refinement 647
13.6.5 Bandwidth Minimization 652
13.7 Application of UNAFEM to a Torsion Problem 657
13.7.1 Description of the Problem 657
13.7.2 Taking Advantage of Symmetry 659
13.7.3 Verification of UNAFEM 662
13.7.4 Analysis of the I-Beam 666
Exercises 670
References 682

CHAPTER 14
2-D Eigenproblems
685
Introduction 685
14.1 Mathematical and Physical Description of the Problem 685
14.2 Derivation of Element Equations 686
14.3 Implementation into the UNAFEM Program 688
14.4 Application of UNAFEM to an Acoustics Problem 688
14.4.1 Description of the Problem 688
14.4.2 Verification of UNAFEM 692
14.4.3 Analysis of the Tunnel 696
Exercises 697
Reference 703

CHAPTER 15
2-D Initial-Boundary-Value Problems
704
Introduction 704
15.1 Mathematical and Physical Description of the Problem 704
15.2 Derivation of Element Equations 705
15.3 Implementation into the UNAFEM Program 707
15.4 Application of UNAFEM to a Transient Heat Conduction Problem 707
15.4.1 Description of the Problem 707
15.4.2 Splitting the Analysis into Shock and Postshock Phases 710
15.4.3 Shock Response 711
15.4.4 Postshock Response 719
Exercises 723
References 729

CHAPTER 16 Elasticity 730

Introduction 730

16.1 Basic Relations in Linear Static Elasticity 731
16.2 Plane Stress and Plane Strain 740
16.2.1 Mathematical and Physical Description 740
16.2.2 Stress-Strain Relations 742
16.2.3 Summary of Important Relations: Conditions for a Well-Posed Problem 750

16.3 Derivation of Element Equations 754

16.4 The Axisymmetric Problem 766
16.4.1 Mathematical and Physical Description 766
16.4.2 Derivation of Element Equations 772

16.5 Program Implementation 778

Exercises 787

References 788

Glossary 791

Appendix Data Input Instructions and Listing for the UNAFEM Program 793

Index 829