CONTROL IN POWER ELECTRONICS
AND ELECTRICAL DRIVES

Proceedings of the Second IFAC Symposium,
Düsseldorf, Federal Republic of Germany, 3 - 5 October 1977

Edited by
W. LEONHARD
Technical University of Braunschweig, Federal Republic of Germany

Published for the
INTERNATIONAL FEDERATION OF AUTOMATIC CONTROL

by
PERGAMON PRESS
OXFORD · NEW YORK · TORONTO · SYDNEY · PARIS · FRANKFURT
CONTENTS

Foreword xiii

Topic 1: CONTROL SYSTEMS EMPLOYING ELECTRONIC POWER CONVERTERS; CONVERTER CIRCUITS

CONTROL PROCEDURES

1.1 ANALYSIS AND SIMULATION

<table>
<thead>
<tr>
<th>Title</th>
<th>Author(s)</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A general digital computer simulation programme for thyristor static converters (programme SACSO) application examples</td>
<td>H. Koch, C. Réboulet, J. Schonek, France</td>
<td>1</td>
</tr>
<tr>
<td>A digital simulation of converter circuits</td>
<td>A. Caffetti, G. Petreoca, A. Savini, Italy</td>
<td>7</td>
</tr>
<tr>
<td>Application of stiffly stable algorithms in the digital computation of the SCR circuits</td>
<td>T. Kutman, Turkey</td>
<td>15</td>
</tr>
<tr>
<td>Calculation of the electrical quantities of converter circuits shown in this case for a quenching, asymmetrical bridge circuit (LUB)</td>
<td>R. Windmüller, FRG</td>
<td>19</td>
</tr>
<tr>
<td>Generalized hybrid computer technique for simulating inverter-fed AC motors drives</td>
<td>P. Ferrarato, M. Lazarić, F. Villata, Italy</td>
<td>27</td>
</tr>
<tr>
<td>Analysis of three-phase semiconductor connections by park-vectors</td>
<td>I. Rács, Hungary</td>
<td>37</td>
</tr>
<tr>
<td>Analysis of forced commutation processes of a bridge inverter by means of symmetrical components</td>
<td>I. Rács, Hungary</td>
<td>45</td>
</tr>
<tr>
<td>A modelling method for the behaviour of converters operating in control loops</td>
<td>R. Prajoux, J. Jalade, J. C. Marpinard, J. Mazankine, France</td>
<td>53</td>
</tr>
<tr>
<td>Study of a DC chopper as a sampled system</td>
<td>H. Bühler, Switzerland</td>
<td>67</td>
</tr>
<tr>
<td>A simple method for a quick-response chopper PWM system with small steady-state error</td>
<td>T. Mochizuki, Y. Tanaka, M. Hiyodo, Japan</td>
<td>79</td>
</tr>
<tr>
<td>Discrete time domain modelling and analysis of DC-DC converters with continuous and discontinuous inductor current</td>
<td>R. P. Iwens, F. C. Lee, J. E. Trüner, USA</td>
<td>87</td>
</tr>
<tr>
<td>Analysis of SCR circuits via augmented state transition matrix</td>
<td>G. Ciocarilla, A. De Carli, N. La Cava, Italy</td>
<td>101</td>
</tr>
<tr>
<td>D.C. chopper circuits with a structure different in intervals</td>
<td>M. Großabach, FRG</td>
<td>107</td>
</tr>
<tr>
<td>A general model for switched DC-DC converters including filters</td>
<td>A. J. Possard, M. Clique, France</td>
<td>117</td>
</tr>
<tr>
<td>DC and AC analysis of thyristor circuits by coordinate transformation and describing-function method</td>
<td>H. Hanaeda, T. Maruhashi, Japan</td>
<td>127</td>
</tr>
</tbody>
</table>
Contribution to simulation and control procedures of brushless DC-machines
R. Hanitsch, FRG

1.2 CONVERTER CIRCUITS AND CONVERTER CONTROL

Developments in sinusoidal P.W.M. inverters
M. G. Jayne, S. R. Bowes, B. M. Bird, UK

On the ordinary and modified subharmonic control
A. Balestrino, G. De Maria, L. Sciavicco, Italy

Pulse ratio modulation: An interesting technique to implement DC/DC conversion
A. Balestrino, A. Eisenberg, L. Sciavicco, Italy

Design of an inverter with optimum output voltage waveform
H. C. Tanju, Turkey

Power factor and current harmonics with cycloconverters fed by a three-phase supply
G. Möltgen, Th. Salzwann, FRG

Harmonic analysis of practical cycloconverters using a digital simulation
C. lung, P. Therme, France

Modified cycloconverter with minimum blanking between bridges
C. Arıkan, Turkey

Thyristor high-frequency resonance inverter with commutating-margin angle/time control system by means of phase-locked loop
M. Nakaoka, T. Maruhashi, Japan

Commutation modes of a current-source inverter
W. Lienau, FRG

Applicable frequency range of current source converters
K. Möll, D. Schröder, FRG

Analysis and design of a current-fed inverter
M. K. Parasuram, B. Ramaswami, India

Modifications of commutation circuits for a three-phase inverter, connected with the neutral conductor
D. Pohl, FRG

Optimal design of the commutating circuit of forced-commutated 3-phase inverters with sequential commutation
H. Fischler, FRG

A new approach to the design of asymmetrically loaded three phase sinusoidal inverters
P. Miljanić, D. Srajberr, P. Miljanović, Yugoslavia

A comparative investigation of high power pulsewidth modulated inverter circuits
I. Topa, Romania

Steady-state behaviour of a high-frequency thyristor inverter
E. Miklós, I. Nagy, Hungary

Fast response-load commutated choppers
N. T. Nicholson, S. B. Dewan, C. N. Porreili, Canada

High-current transistor choppers
H. Knoll, FRG

A load insensitive DC/DC converter for supply of telephone exchanges
I. Flegar, Yugoslavia
Contents

Rectifying single-phase and three-phase A.C. with forced-commutated converters
H. Kahlen, FRG 323

Reduction of the harmonic content of the load current of three phase inverters
fed by direct current sources
S. Ditteney, FRG 331

A new approach to power converter circuits
F. Mehta, T. Thomson, W. Un, U.K. 335

Surge suppressor's design by means of nomograms
H. Tuitsa, A. Wójciak, Poland 345

Topic 2. BEHAVIOUR OF INVERTER-FED ELECTRICAL MACHINES AND REQUIREMENTS IMPOSED BY CONVERTER OPERATION

Current status of power thyristors and rectifiers
E. Spenke, P. Voss, FRG 355

Dynamic performance of converter-fed synchronous motors
F. Harashima, H. Mutcho, Japan 369

Optimal control of voltage source inverters supplying induction motors
S. Halász, Hungary 379

Experimental and theoretical investigations concerning the design of induction machines, especially machines with high power density with respect to the inverter supply and speed regulation
Ph. K. Sattler, G. Balslemke, FRG 387

A comparison between operating conditions of inverter-fed asynchronous motors
E. Pagano, A. Perfetto, Italy 399

A dimensioning criterion for the shafting of the variable frequency fed induction motor
I. Marongiu, Italy 405

Approximate formulae for the characteristic values of electrical machines
M. Poliestro, V. Torriano, Italy 409

The influence of thyristor control on traction motors
H. Bausberger, FRG 415

Open loop control of a linear vernier reluctance motor in a stepping mode
J. W. Finoch, U.K. 421

Topic 3. CONVERTER-FED AC- AND DC- DRIVES

Inversion of the rotating direction of a current-fed closed-loop controlled asynchronous machine
B. Tramoy, B. de Rormel, M. Grandpierre, France 433

The operational modes of a current source inverter induction motor drive system
J. Ladsdr, Hungary 443

On the utility of signal flow graphs in the analysis of current controlled induction motor
V. Subrahmanyam, D. Subbarayudu, M. V. C. Rao, India 455

Stationary and dynamic behaviour of a speed controlled synchronous motor with cos 6- or commutation limit line control
J. Leinmüber, Switzerland 463

Transient characteristics and limits of a squirrel-cage motor fed from a frequency-converter with D.C. current link
L. Abraham, FRG 475
<table>
<thead>
<tr>
<th>Topic 4/5. APPLICATION OF CONTROLLED INDUSTRIAL DRIVES</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONTROLLED DRIVES IN TRACTION; LAND TRANSPORTATION; LINEAR MOTORS</td>
</tr>
<tr>
<td>The analysis of dynamics of induction driving motors of mine winders with frequency control</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stability problems with the control of induction machines using the method of field orientation</td>
</tr>
<tr>
<td>K.-H. Bayer, P. Blaschke, FRG</td>
</tr>
<tr>
<td>Time-response analysis of inverter-fed induction motors with controlled stator current</td>
</tr>
<tr>
<td>G. Pfaff, FRG</td>
</tr>
<tr>
<td>Computation of optimum control functions for transients of induction motors</td>
</tr>
<tr>
<td>Chr. Motor, FRG</td>
</tr>
<tr>
<td>Analysis and comparison of different P.W.M. techniques for induction motor drives</td>
</tr>
<tr>
<td>A. Bellini, G. Figalli, Italy</td>
</tr>
<tr>
<td>Interaction between converter, signal-processing and control for a converter-fed squirrel-cage motor</td>
</tr>
<tr>
<td>K.-F. Warnecke, FRG</td>
</tr>
<tr>
<td>Analysis and design of pulse commutated inverter circuits for multimotor drives</td>
</tr>
<tr>
<td>M. Novak, Poland</td>
</tr>
<tr>
<td>Control of cycloconverters for feeding of asynchronous machines</td>
</tr>
<tr>
<td>K. Hasse, FRG</td>
</tr>
<tr>
<td>Continuous operation methods of static scherbius control systems at instantaneous power failure</td>
</tr>
<tr>
<td>M. Hombu, T. Horii, Y. Hiro, H. Ishikawa, K. Iwata, Y. Fukuda, Japan</td>
</tr>
<tr>
<td>Super-synchronous static converter cascade</td>
</tr>
<tr>
<td>P. Zimmermann, FRG</td>
</tr>
<tr>
<td>A modified rotor chopper for speed control of slip ring induction motors</td>
</tr>
<tr>
<td>S. S. Kelkar, S. K. Pillai, India</td>
</tr>
<tr>
<td>Analysis of self-excitation of voltage controlled induction motor</td>
</tr>
<tr>
<td>M. Høyvik, Hungary</td>
</tr>
<tr>
<td>Comparison of speed controlled DC drives with and without subordinate current loop</td>
</tr>
<tr>
<td>H. Grostolten, FRG</td>
</tr>
<tr>
<td>Design of an optimal, autoadapative current loop for D.C. motor. Realization with an hybrid device including a microprocessor</td>
</tr>
<tr>
<td>A. Oummar, J. P. Louis, A. El-Befnawy, France</td>
</tr>
<tr>
<td>Control of DC-drives by microprocessors</td>
</tr>
<tr>
<td>E. Schröder, FRG</td>
</tr>
<tr>
<td>Simulation of the chopper controlled DC series motor</td>
</tr>
<tr>
<td>T. Fujimaki, K. Okawa, O. Miyashita, Japan</td>
</tr>
<tr>
<td>The commutatorless D.C. motor with three-phase current excitation</td>
</tr>
<tr>
<td>A. Lütger, FRG</td>
</tr>
<tr>
<td>Hybrid linear electric drive for industrial applications</td>
</tr>
<tr>
<td>M. Hańcak, O. Houbovék, Z. Pazúň, CSSR</td>
</tr>
<tr>
<td>The influence of drive circuit parameters on the performances of stepping motors</td>
</tr>
<tr>
<td>A. Kelemen, V. Trifcă, Romania</td>
</tr>
<tr>
<td>The application of controlled static converters in tractive units</td>
</tr>
<tr>
<td>H. H. Weber, Switzerland</td>
</tr>
</tbody>
</table>
On-line recording with a storage display and a process computer for current locus and torque-speed characteristic of an induction machine at rated voltage
Fr. Depping, J. Neigel, FRG

High accuracy and fast response digital speed measurement for control of industrial motor drives
V. Török, J. Valis, Sweden

Multi-step line- and self-commutated single-phase bridge converter
A. Müller-Hellmann, FRG

Single-phase converters with forced commutation based on the supporting capacitor principle
W. Runge, FRG

Digital simulations of a forced-commutated converter for single-phase for AC locomotives
H. Schlunegger, Switzerland

Tolerance band controlled single phase converter circuit with minimum interactions between converter and supply by optimum control parallel operation
G. Klinger, FRG

Three-phase A.C. motor vehicles from D.C. power supply feed-in circuit and interference current reduction
G. E. Hill, W. Daumann, FRG

Steady-state behaviour of induction machines fed by a frequency converter which is supplied by a DC-link with an AC-component
W. Ruhn, FRG

Inverter-fed asynchronous motors for traction systems
C. Rossi, G. Stopiglia, E. Tortello, Italy

Control of rotating and linear induction motors for vehicle drives
P. Appun, FRG

Control system with converter for improving the dynamic response of magnetically suspended vehicles
E. Koopmann, U. Wiedemann, FRG

Microcomputer based data acquisition and propulsion control for a track-powered linear synchronous motor for high-speed ground transportation
B. Böning, FRG

Analysis of drives for electric road vehicles—requirements, basic design, properties, value and optimization criteria
A. Cupsa, FRG

The application of transistorized switches to D.C. and A.C. machines for the control of battery vehicles up to 30kW
J. D. van Wyk, J. J. Schouman, South Africa

Steady state performance of chopper control system of a series motor on the traction mode
C. P. Bottura, H. M. F. Tavares, Brazil

A fail-operational steering servo for vehicles
J. L. Feaver, U.K.

Topic 6. SOLID STATE ENERGY CONVERSION (HVDC, INDUCTIVE HEATING, REACTIVE POWER COMPENSATION, MISCELLANEOUS)

Investigation of control problems during HVDC inverter operation
K. Fay, FRG

Improving the performance of a parallel AC/DC transmission system using an adaptive optimal control policy
B. Cuno, FRG
Contents

Unit connection of generator and HVDC converter, link between power generation and power transmission
M. Hausler, P. Mutschler, FRG 887

Comparison of installations for compensation of reactive power
G. Loocke, FRG 895

High-speed VAR control using static converters in short-circuit
E. Schmid, FRG 907

Controllable static reactive-power compensators in electrical supply system
H. Aohenbach, W. Hanke, W. Hochstetter, FRG 917

Converter-controlled reactive power compensators for stabilizing EHV three-phase transmission systems
H. Stemmler, Switzerland 927

Operating results of a compensating equipment
D. Schröder, FRG 937

Reactive power static compensation and harmonic filtering in a metal industry plant
C. Boisdon, M. Boidin, France 945

Thyristor controller for induction smelting furnace
A. Dmowski, K. Stankowski, R. Kajać, P. Fabijanski, Poland 961

Digital control system for uninterruptible power supply
F. Benvenuto, C. Di Tomaso, L. Flore Donati, D. Sbragia, A. Vallocca, Italy 973

Harmonic analyzer for supply frequencies
B. Wehrli, Switzerland 981

FURTHER ARTICLE FOR TOPIC 1

Power electronic circuit analysis techniques
R. G. Hoft, J. B. Casteel, USA 987

Author Index 1025