ANTENNA THEORY
part 2

Robert E. Collin
Division of Electrical Sciences and Applied Physics
Case Western Reserve University
Cleveland, Ohio

Francis J. Zucker
Air Force Cambridge Research Laboratories
L. G. Hanscom Field
Bedford, Massachusetts

McGraw-Hill Book Company
New York St. Louis San Francisco London Sydney Toronto Mexico Panama
CONTENTS

Foreword v
Preface vii

CHAPTER 16

WAVE FRONTS, RAYS, AND FOCAL SURFACES

F. Sheppard Holt

16.1 Introduction 1
16.2 The Eikonal and the Eikonal Equation 2
16.3 Geometrical Optics as a Zero-wavelength Approximation 4
16.4 Fermat's Principle and Snell's Laws 6
16.5 Phase Analysis and Phase Synthesis 8
16.6 Power Flow in Ray Tubes 10
16.7 Power Distribution in the Aperture 11
16.8 Power Distribution in the Focal Region 13
16.9 Power Distribution in the Far Field 15
16.10 Reflection from a Conducting Surface 17
16.11 Ray Collimation and Off-focus Feeding 19
16.12 Congruences and the Equal-path-length Law 21
16.13 Focal Surfaces 23
16.14 General Comments on Focal Surfaces 28
Appendix A: Principal Normal Radii of Curvature, Principal Directions, Principal Planes, and Lines of Curvature 30
Appendix B: Geometrical Optics Power Flow in a Source-free, Nonconducting, Isotropic, Homogeneous Medium 31

Problems 33
References 34

CHAPTER 17

REFLECTOR ANTENNAS

C. J. Sletten

17.1 Importance of Reflector Antennas 36
17.2 Types of Reflector Antennas and Their Primary Uses 36
17.3 The Paraboloid with Source at the Focus 37
17.4 The Wide-angle or Off-focus Characteristics of Paraboloids 55
17.5 Techniques for Compound Primary-feed Designs 64
17.6 Spherical Reflector 69
17.7 Cylindrical Reflector Antennas 83
17.8 Parabolic Torus Antennas 86
17.9 Stepped Reflector Antennas 89
17.10 Multiplate Antenna 92
17.11 The Corner Reflector Antenna 96

Problems 101
References 101
CHAPTER 18

LENS ANTENNAS

John Brown

18.1 Introduction 104
18.2 Artificial Dielectrics 104
18.3 Design of Homogeneous Lenses 117
18.4 Lenses for Beam-scanning Applications 121
18.5 Extension of Scanning Analysis 126
18.6 Nonhomogeneous Lenses 131
18.7 Configuration Lenses 136
18.8 Discussion 144
Problems 145
References 149

CHAPTER 19

GENERAL CHARACTERISTICS OF TRAVELING-WAVE ANTENNAS

Alexander Hessel

19.1 Introduction 151
19.2 Modal Properties of Uniform Traveling-wave Structures 155
19.3 The Dispersion Relation for Shielded Waveguides 156
19.4 Guided Waves on Planar Open Structures 162
19.5 The Excitation Problem in Traveling-wave Structures 168
19.6 Characteristics of Specific Guided Waves 177
19.7 Guided Waves on Periodically Loaded Traveling-wave Structures 184
19.8 The Brillouin Diagram and Mode Coupling in Closed Periodic Structures 191
19.9 Guided Waves on Radiating, Periodically Loaded, Traveling-wave Structures — Kinematic Properties 195
19.10 Spectral Properties of Spatial Harmonics 203
19.11 Guided Waves in Radiating, Periodically Loaded, Traveling-wave Structures — Dynamic Properties 209
19.12 Examples of Brillouin Diagrams of Periodically Loaded, Radiating, Traveling-wave Structures 225
Appendix A: Review of Modal Formalism 235
Appendix B: The Square Root Function in the Complex $k_z$ Plane 238
Appendix C: The Transformation $k_z = k_0 \sin \varphi$ 241
Appendix D: The Spectral Representation of the Field of a Magnetic Line Source above an Inductive Surface Reactance Plane 242
Appendix E: Some Properties of the Dispersion Relation of Lossless, Planar, Periodic, Open, Traveling-wave Structures 246
Appendix F: The principal Branch of Solutions of the Dispersion Relation for SMRS at $\beta d = 2\pi$ 248
Problems 250
References 255
## CHAPTER 20

**LEAKY-WAVE ANTENNAS**  
T. Tamir

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.1</td>
<td>Introduction</td>
<td>259</td>
</tr>
<tr>
<td>20.2</td>
<td>The Field of a Leaky-wave Distribution</td>
<td>262</td>
</tr>
<tr>
<td>20.3</td>
<td>Radiation-pattern Calculations</td>
<td>268</td>
</tr>
<tr>
<td>20.4</td>
<td>The Complex-angle Plane $w$ and Its Relation to the Leaky-wave Field</td>
<td>273</td>
</tr>
<tr>
<td>20.5</td>
<td>Control of Aperture Distribution</td>
<td>277</td>
</tr>
<tr>
<td>20.6</td>
<td>Determination of the Complex Wave Number $k_\nu$</td>
<td>279</td>
</tr>
<tr>
<td>20.7</td>
<td>Specific Antenna Structures</td>
<td>289</td>
</tr>
</tbody>
</table>

Problems 295  
References 295

## CHAPTER 21

**SURFACE-WAVE ANTENNAS**  
Francis J. Zucker

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.1</td>
<td>Introduction to Surface Waves</td>
<td>298</td>
</tr>
<tr>
<td>21.2</td>
<td>How Does a Surface-wave Antenna Radiate?</td>
<td>304</td>
</tr>
<tr>
<td>21.3</td>
<td>Surface-wave Excitation</td>
<td>313</td>
</tr>
<tr>
<td>21.4</td>
<td>Discontinuities and Tapers</td>
<td>325</td>
</tr>
<tr>
<td>21.5</td>
<td>Surface-wave Structures</td>
<td>331</td>
</tr>
<tr>
<td>Appendix:</td>
<td>Saddle-point Integration</td>
<td>338</td>
</tr>
</tbody>
</table>

Problems 341  
References 343

## CHAPTER 22

**LOG-PERIODIC ANTENNAS**  
R. Mittra

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.1</td>
<td>Historical Introduction</td>
<td>349</td>
</tr>
<tr>
<td>22.2</td>
<td>Principle of Scaling and Application to Log-periodic Design</td>
<td>350</td>
</tr>
<tr>
<td>22.3</td>
<td>Application of $k$-$\beta$ Diagrams to Log-periodic Antenna Analysis</td>
<td>357</td>
</tr>
<tr>
<td>22.4</td>
<td>Other Approaches to the Analysis of Log-periodic Structures</td>
<td>361</td>
</tr>
<tr>
<td>22.5</td>
<td>Transient Response of Log-periodic Antennas</td>
<td>378</td>
</tr>
</tbody>
</table>

Appendix A: Solution of Equations for $P(\alpha)$ and $Q(\alpha)$ Appearing in Sec. 22.4d 380  
Appendix B: The Expressions for the Far Field of a Conical Spiral Antenna 382  

Problems 383  
References 384

## CHAPTER 23

**CHARACTERISTICS OF ANTENNAS OVER LOSSY EARTH**  
James R. Wait

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.1</td>
<td>Fields of Elementary Dipoles over a Homogeneous Half Space</td>
<td>386</td>
</tr>
<tr>
<td>23.2</td>
<td>Radiation Resistance and Impedance Increments Resulting from the Presence of the Homogeneous Half Space</td>
<td>392</td>
</tr>
</tbody>
</table>
CHAPTER 24

ELECTROMAGNETIC FIELDS OF SOURCES IN LOSSY MEDIA

James R. Wait

24.1 Introduction 438
24.2 The Infinitesimal Radiating Sources in a Lossy Medium 442
24.3 The Finite Current Element 458
24.4 The Horizontally Stratified Earth 461
24.5 Electric Dipole inside a Two-layer Earth 476
24.6 The Infinite Wire over the Three-layer Earth 482
24.7 Grounded Wires on the Homogeneous Earth 492
24.8 Self-impedance of Circuits in a Dissipative Medium 495
Appendix A: Plane Wave Transient Propagation 502
Appendix B: Evaluation of Integrals 505
References 506

CHAPTER 25

ANTENNAS IN PLASMA

James R. Wait

25.1 Introduction and Basic Considerations 515
25.2 Radiation from a Current Distribution in an Isotropic Electron Plasma 518
25.3 Application to a Cylindrical Antenna 520
25.4 The Cylindrical Shell Model 526
25.5 Collected Results 529
25.6 Boundary-value Approaches to Antennas in Plasma Media 532
25.7 Influence of the DC Magnetic Field 548
25.8 Concluding Remarks 551
References 553

CHAPTER 26

THE ANTENNA AS A SPATIAL FILTER

A. C. Schell

26.1 Introduction 557
26.2 Spatial Frequency Analysis 557
## CONTENTS

26.3 *The Distinction between Coherence and Incoherence* 560  
26.4 *The Incoherent Source Antenna Transfer Function* 561  
26.5 *Different Antenna Types and Their Spatial Frequency Responses* 563  
26.6 *Optimizing System Performance* 565  
26.7 *Optimizing Incoherent Source Transfer Functions* 567  
26.8 *Data Processing* 570  
26.9 *Angular Resolution Enhancement* 574  
Problems 577  
References 578

## CHAPTER 27

**SIGNAL-PROCESSING ANTENNAS**

A. A. Ksienski

27.1 *Introduction* 580  
27.2 *Definition and Description of Multiplicative Arrays* 583  
27.3 *Response of Linear and Nonlinear Multiplicative Antennas to General Source Distributions* 586  
27.4 *Performance of Multiplicative Arrays in the Presence of Noise* 596  
27.5 *Multiple Correlation Arrays* 608  
27.6 *Aperture Synthesis* 608  
27.7 *Applications of Multiplicative Arrays* 611  
27.8 *Pattern Multiplication by Two-way Mode of Operation* 616  
27.9 *Definition and Description of Synthetic Array Radar* 620  
27.10 *Synthetic Array Pattern* 622  
27.11 *Parametric Design Considerations of Synthetic Array Radar* 624  
27.12 *Unfocused Synthetic Arrays* 627  
27.13 *Focused Synthetic Arrays* 630  
27.14 *Recording and Optical Processing in Synthetic Array Radar* 631  
27.15 *The Optical Properties of the Records* 634  
27.16 *Performance Degrading Factors of Synthetic Array Radar* 635  
27.17 *Detection Methods* 643  
Problems 650  
References 651

## CHAPTER 28

**LARGE ANTENNA SYSTEMS**

Merrill I. Skolnik

28.1 *Introduction* 655  
28.2 *Limitations to Antenna Size* 657  
28.3 *Large Antennas — Examples* 665  
Problems 673  
References 673  

Bibliography 675  
Index 677