CONTENTS

1 Computer Vision: Overview

1.1 Introduction 1
1.2 Recognition Methodology
 1.2.1 Conditioning 5
 1.2.2 Labeling 6
 1.2.3 Grouping 6
 1.2.4 Extracting 7
 1.2.5 Matching 7
1.3 Outline of Book 8
Bibliography 11

2 Binary Machine Vision: Thresholding and Segmentation 13

2.1 Introduction 13
2.2 Thresholding 14
 2.2.1 Minimizing Within-Group Variance 20
 2.2.2 Minimizing Kullback Information Distance 23
2.3 Connected Components Labeling
 2.3.1 Connected Components Operators 28
 2.3.2 Connected Components Algorithms 31
 2.3.3 An Iterative Algorithm 32
 2.3.4 The Classical Algorithm 33
 2.3.5 A Space-Efficient Two-Pass Algorithm That Uses
 a Local Equivalence Table 37
 2.3.6 An Efficient Run-Length Implementation of the
 Local Table Method 40
Bibliography 11
5 Mathematical Morphology

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Introduction</td>
<td>157</td>
</tr>
<tr>
<td>5.2</td>
<td>Binary Morphology</td>
<td>158</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Binary Dilation</td>
<td>158</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Binary Erosion</td>
<td>161</td>
</tr>
<tr>
<td>5.2.3</td>
<td>Hit-and-Miss Transform</td>
<td>168</td>
</tr>
<tr>
<td>5.2.4</td>
<td>Dilation and Erosion Summary</td>
<td>173</td>
</tr>
<tr>
<td>5.2.5</td>
<td>Opening and Closing</td>
<td>174</td>
</tr>
<tr>
<td>5.2.6</td>
<td>Morphological Shape Feature Extraction</td>
<td>189</td>
</tr>
<tr>
<td>5.2.7</td>
<td>Fast Dilations and Erosions</td>
<td>189</td>
</tr>
<tr>
<td>5.3</td>
<td>Connectivity</td>
<td>191</td>
</tr>
<tr>
<td>5.3.1</td>
<td>Separation Relation</td>
<td>191</td>
</tr>
<tr>
<td>5.3.2</td>
<td>Morphological Noise Cleaning and Connectivity</td>
<td>195</td>
</tr>
<tr>
<td>5.3.3</td>
<td>Openings, Holes, and Connectivity</td>
<td>195</td>
</tr>
<tr>
<td>5.3.4</td>
<td>Conditional Dilation</td>
<td>196</td>
</tr>
<tr>
<td>5.4</td>
<td>Generalized Openings and Closings</td>
<td>198</td>
</tr>
<tr>
<td>5.5</td>
<td>Gray Scale Morphology</td>
<td>200</td>
</tr>
<tr>
<td>5.5.1</td>
<td>Gray Scale Dilation and Erosion</td>
<td>200</td>
</tr>
<tr>
<td>5.5.2</td>
<td>Umbra Homomorphism Theorems</td>
<td>205</td>
</tr>
<tr>
<td>5.5.3</td>
<td>Gray Scale Opening and Closing</td>
<td>210</td>
</tr>
<tr>
<td>5.6</td>
<td>Openings, Closings, and Medians</td>
<td>215</td>
</tr>
<tr>
<td>5.7</td>
<td>Bounding Second Derivatives</td>
<td>218</td>
</tr>
<tr>
<td>5.8</td>
<td>Distance Transform and Recursive Morphology</td>
<td>221</td>
</tr>
<tr>
<td>5.9</td>
<td>Generalized Distance Transform</td>
<td>226</td>
</tr>
<tr>
<td>5.10</td>
<td>Medial Axis</td>
<td>230</td>
</tr>
<tr>
<td>5.10.1</td>
<td>Medial Axis and Morphological Skeleton</td>
<td>233</td>
</tr>
<tr>
<td>5.11</td>
<td>Morphological Sampling Theorem</td>
<td>237</td>
</tr>
<tr>
<td>5.11.1</td>
<td>Set-Bounding Relationships</td>
<td>241</td>
</tr>
<tr>
<td>5.11.2</td>
<td>Examples</td>
<td>244</td>
</tr>
<tr>
<td>5.11.3</td>
<td>Distance Relationships</td>
<td>247</td>
</tr>
<tr>
<td>5.12</td>
<td>Summary</td>
<td>253</td>
</tr>
<tr>
<td></td>
<td>Exercises</td>
<td>253</td>
</tr>
<tr>
<td></td>
<td>Bibliography</td>
<td>255</td>
</tr>
</tbody>
</table>

6 Neighborhood Operators

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>Introduction</td>
<td>263</td>
</tr>
<tr>
<td>6.2</td>
<td>Symbolic Neighborhood Operators</td>
<td>268</td>
</tr>
<tr>
<td>6.2.1</td>
<td>Region-Growing Operator</td>
<td>269</td>
</tr>
<tr>
<td>6.2.2</td>
<td>Nearest Neighbor Sets and Influence Zones</td>
<td>270</td>
</tr>
<tr>
<td>6.2.3</td>
<td>Region-Shrinking Operator</td>
<td>270</td>
</tr>
<tr>
<td>6.2.4</td>
<td>Mark-Interior/Border-Pixel Operator</td>
<td>272</td>
</tr>
<tr>
<td>6.2.5</td>
<td>Connectivity Number Operator</td>
<td>272</td>
</tr>
<tr>
<td>6.2.6</td>
<td>Connected Shrink Operator</td>
<td>276</td>
</tr>
</tbody>
</table>
9.1 Introduction
9.2 Gray Level Co-Occurrence
 9.2.1 Generalized Gray Level Spatial Dependence Models for Texture
9.3 Strong Texture Measures and Generalized Co-Occurrence
 9.3.1 Spatial Relationships
9.4 Autocorrelation Function and Texture
9.5 Digital Transform Methods and Texture
9.6 Textural Energy
9.7 Textural Edgeness
9.8 Vector Dispersion
10 Image Segmentation

10.1 Introduction 509
10.2 Measurement-Space-Guided Spatial Clustering 511
 10.2.1 Thresholding 518
 10.2.2 Multidimensional Measurement-Space Clustering 524
10.3 Region Growing 525
 10.3.1 Single-Linkage Region Growing 525
 10.3.2 Hybrid-Linkage Region Growing 526
 10.3.3 Centroid-Linkage Region Growing 532
10.4 Hybrid-Linkage Combinations 536
10.5 Spatial Clustering 537
10.6 Split and Merge 540
10.7 Rule-Based Segmentation 542
10.8 Motion-Based Segmentation 545
10.9 Summary 548
Exercises 549
Bibliography 550

11 Arc Extraction and Segmentation

11.1 Introduction 555
11.2 Extracting Boundary Pixels from a Segmented Image 556
 11.2.1 Concepts and Data Structures 556
 11.2.2 Border-Tracking Algorithm 556
11.3 Linking One-Pixel-Wide Edges or Lines 558
11.4 Edge and Line Linking Using Directional Information 561
11.5 Segmentation of Arcs into Simple Segments 563
 11.5.1 Iterative Endpoint Fit and Split 563
 11.5.2 Tangential Angle Deflection 565
 11.5.3 Uniform Bounded-Error Approximation 569
Exercises 569
Bibliography 570
11.5.4 Breakpoint Optimization 571
11.5.5 Split and Merge 573
11.5.6 Isodata Segmentation 574
11.5.7 Curvature 575

11.6 Hough Transform 578
11.6.1 Hough Transform Technique 578
11.6.2 A Bayesian Approach to the Hough Transform 585

11.7 Line Fitting 588
11.7.1 Variance of the Fitted Parameters 591
11.7.2 Principal-Axis Curve Fit 595

11.8 Region-of-Support Determination 597

11.9 Robust Line Fitting 599

11.10 Least-Square Curve Fitting 602
11.10.1 Gradient Descent 605
11.10.2 Newton Method 607
11.10.3 Second-Order Approximation to Curve Fitting 607
11.10.4 Fitting to a Circle 608
11.10.5 Variance of the Fitted Parameters 617
11.10.6 Fitting to a Conic 621
11.10.7 Fitting to an Ellipse 622
11.10.8 Bayesian Fitting 624
11.10.9 Uniform Error Estimation 625

Exercises 627
Bibliography 631

A Appendix 639

A.1 Properties of an Ellipse 639
A.2 Analytic Geometry of the Ellipse 639
A.3 Orientation and Axis Length 642
A.4 Tangent Lines and Extremal Points 647
A.5 Extremal Points 648
A.6 From Extremal Points to Characterization of the Ellipse 650
A.7 Moments of an Ellipse 654
 A.7.1 Area 654
 A.7.2 Second Moments 655
 A.7.3 Second Moments and the Properties of the Ellipse 656

B Appendix 659

B.1 Linear Algebra Background 659
B.2 Discrete Least Squares Understood in Terms of Orthogonal Projection 663
Bibliography 665