CONTENTS

Preface ix

I Definitions and General Concepts 1

I-1. Symbols and Basic Relations, 1
I-2. The Net Acid-Base Function, C_{AB}, 6
I-3. Programming Functions, 7
I-4. Explication of K_a and Activities: Spreadsheets, 9
I-5. A Note on Symbols, Plots, and Exercises, 14
I-6. List of Symbols, 15
Summary, 16

II Monoprotic Acid–Bases, 19

II-1. Definitions and Explanations of Terms, 19
II-2. Introductory Diagrams for Acid–Base Relations, 21
II-3. General Relations: α and Charlot Equations, 28
II-4. Ratio of Conjugates, 32
II-5. Treatment of Various Monoprotic Systems, 33
II-6. Mixtures of Systems, 40
II-7. Weak–Strong Mixtures, 46
II-8. Dilution of Weak Acids, 49
II-9. Conjugate Base Solutions and Complete Cubic Equations, 52
II-10. Approximate pH Calculations: Getting Estimates of pH Region to Use in Rigorous Calculations, 56
 Summary, 57
 Exercises, 57
 References, 58

III Polyprotic Acid–Base Equilibrium 59
 III-1. H Relations, 59
 III-2. Polyprotic Diagrams and Balances, 64
 III-3. Summary of Methods, 68
 III-4. Features and Uses of α–pH Diagrams, 69
 III-5. Review of Approximate pH Calculations Estimating the pH, 71
 III-6. Choice of Starting Concentration Terms: Equivalent Solutions, 72
 III-7. Numerical Solutions to pH Problems, 75
 III-8. The Complete n′ Function: Further Examples of n, n′ Intersections, 83
 III-9. Correct Ampholyte Relations Using the Complete Approach, 86
 III-10. Mixed Systems, 89
 III-11. Concentration Dependence of pH in Polyprotic Systems, 93
 III-12. Further Example Calculations, 96
 Summary, 101
 Exercises, 102
 References, 105

IV Buffers, Acid–Base Titrations, Laboratory Strategies and K_a Determinations 107
 IV-1. Titration Equations, 107
 IV-2. Effect of pK Spacing and Concentrations, 110
 IV-3. Weak Acid–Weak Base Mixtures, 111
 IV-4. Statistical Effects in Titrations, 118
 IV-5. Slope, Buffer Capacity, and Methods for Determination of Equivalence Point by Linear Functions (Gran Plots), 119
 IV-6. Practical Aspects: Ionic Strength Control, 128
 IV-7. K_a Determinations, 130
 IV-8. Further Buffer Topics, 134
 Summary, 139
V Metal–Ligand Equilibria 141

Introduction, 141
V-1. Fundamental Relations, 142
V-2. Typical Systems: Monodentate Ligands, 144
V-3. Interaction of Proton and ML Equilibria, 149
V-4. Experimental Determination of \bar{n} and the Formation Constants, 154
V-5. Bjerrum's Method, 156
V-6. Slopes of \bar{n} Curves, 157
V-7. F_0 or α_0 Methods, 162
V-8. Protonated Ligand, Polynuclear, and Mixed Complexing, 167
V-9. Hydroxide Complexes and Polynuclear Cases, 170
V-10. The Mixed System: Cu(II)–NH$_3$–OH, 180

Summary, 186
Exercises, 186
References, 187

VI Solubility 189

VI-1. Definitions and Simple Cases, 189
VI-2. Experimental Determination of K_{s0}, 192
VI-3. Ionic and Molecular Solubility, 196
VI-4. Solubility with Multiple Complexing: Complexing with Added Common Ion, 200
VI-5. General Solubility Diagrams, 204
VI-6. Solubilities of MX with added ligand L That Is Not the Common Ion, X, 208
VI-7. Solubility with Proton Reactions, 211
VI-8. Polynuclear Hydroxide Solubilities, 226

Summary, 229
Exercises, 230
References, 231

Appendix A Aspects of Solution Chemistry 233

Appendix B Mathematical Tactics 243

Appendix C Experimental Aids and Preparations 265
Appendix D Tables of Values of Equilibrium Functions 283
Key Points 301
Annotated Bibliography 307
Index 311