SOFTWARE PSYCHOLOGY

Human Factors in Computer and Information Systems

BEN SHNEIDERMAN
Associate Professor
Department of Computer Science
University of Maryland

WINTHROP PUBLISHERS, INC.
Cambridge, Massachusetts
CONTENTS

PREFACE xi

1. MOTIVATION FOR A PSYCHOLOGICAL APPROACH 1
 1.1. Introduction to Software Psychology 2
 1.2. Scope of Software Psychology 3
 1.2.1. Programming Languages 4
 1.2.2. Operating Systems Control Languages 4
 1.2.3. Database Query Facilities 4
 1.2.4. Editors 5
 1.2.5. Terminal Interactions 5
 1.3. Goals of Software Psychology 5
 1.3.1. Enhance Programming Practice 6
 1.3.2. Refine Programming Techniques 6
 1.3.3. Improve Teaching 7
 1.3.4. Develop Software Metrics 8
 1.3.5. Assess Programmer Aptitude and Ability 8
 1.4. Review of Sources 9
 1.5. Practitioner’s Summary 10
 1.6. Researcher’s Agenda 10

2. RESEARCH METHODS 13
 2.1. Introspection and Protocol Analysis 14
 2.2. Case Studies and Field Studies 15
 2.3. Controlled Experimentation 16
 2.3.1. Simple Experimental Designs 16
 2.3.2. Subjects 17
 2.3.3. Statistical Methods: t-test 17
 2.3.4. Two-Factor Experiments 20
 2.3.5. Three-Factor Experiments 21
 2.3.6. Correlation Studies 22
 2.3.7. Counterbalanced Orderings 24
Contents

2.4. Statistical Analysis by Computer 25
2.5. Measurement Techniques 25
 2.5.1. Performance Tasks: Comprehension 26
 2.5.2. Performance Tasks: Composition 27
 2.5.3. Performance Tasks: Debugging 28
 2.5.4. Performance Tasks: Modification 29
 2.5.5. Time 29
 2.5.6. Memorization/Reconstruction 29
 2.5.7. Background 34
 2.5.8. Subjective Measures 35
2.6. Experimental Ethics 37
2.7. Practitioner's Summary 37
2.8. Researcher's Agenda 37

3. PROGRAMMING AS HUMAN PERFORMANCE 39

 3.1. Classes of Computer Users 40
 3.2. Programming Tasks 41
 3.2.1. Learning 41
 3.2.2. Design 42
 3.2.3. Composition 42
 3.2.4. Comprehension 42
 3.2.5. Testing 43
 3.2.6. Debugging 43
 3.2.7. Documentation 44
 3.2.8. Modification 44
 3.3. The Programming Environment 44
 3.3.1. Physical and Social Environment 44
 3.3.2. Managerial Environment 45
 3.4. The Syntactic/Semantic Model 46
 3.4.1. Cognitive Structures Are Multileveled 47
 3.4.2. Program Composition in the Model 49
 3.4.3. Program Comprehension in the Model 51
 3.4.4. Debugging and Modification in the Model 53
 3.4.5. Learning in the Model 54
 3.5. Personality Factors 55
 3.6. Psychological Testing 57
 3.7. Practitioner's Summary 62
 3.8. Researcher's Agenda 62

4. PROGRAMMING STYLE 65

 4.1. Introduction 66
 4.2. Stylistic Guidelines 66
 4.2.1. Commenting 66
4.2.2. Variable Names 70
4.2.3. Indentation 72

4.3. Programming Language Features 74
4.3.1. Conditional Statements 74
4.3.2. Iteration and Recursion 78
4.3.3. Syntactic Choice 79
4.3.4. Structured Control Structures 79
4.3.5. Flowcharting 81

4.4. Debugging Studies 86
4.5. Practitioner’s Summary 90
4.6. Researcher’s Agenda 90

5. SOFTWARE QUALITY EVALUATION 93

5.1. Introduction 94
5.2. Boehm, Brown and Lipow’s Metrics 95
5.3. Gilb’s Software Metrics 98
5.4. Halstead’s Software Science 101
5.5. Programming Productivity Measures 106
5.6. Reliability 109
5.7. Maintainability 112
5.8. Complexity/Comprehension 113
5.8.1. Logical, Structural, and Psychological Complexity 113
5.8.2. McCabe’s Complexity Measure 114
5.8.3. Structural Complexity 118
5.8.4. Comprehensibility 119

5.9. Practitioner’s Summary 120
5.10. Researcher’s Agenda 120

6. TEAM ORGANIZATIONS AND GROUP PROCESSES 123

6.1. Introduction 124
6.2. Team Organizations 125
6.2.1. The Conventional Team 125
6.2.2. The Egoless Team 126
6.2.3. Chief Programmer Teams 127
6.3. Group Processes 129
6.3.1. Inspection Techniques 129
6.3.2. Structured Walkthroughs 130
6.3.3. Formal Technical Reviews 131
6.3.4. MECCA Method 132
6.3.5. Peer Review and Peer Rating 133
6.3.6. Group Testing and Debugging 138

6.4. Practitioner’s Summary 140
6.5. Researcher’s Agenda 141
7. DATABASE SYSTEMS AND DATA MODELS 143

7.1. Introduction to Database Systems 144
 7.1.1. The Hierarchical Data Model 146
 7.1.2. The Network Model 148
 7.1.3. The Relational Model 154
 7.1.4. Other Data Models 157
 7.1.5. Subschemes and Views 158

7.2. Data Model Selection 161
7.3. Subschema Design 167
7.4. Practitioner’s Summary 171
7.5. Researcher’s Agenda 171

8. DATABASE QUERY AND MANIPULATION LANGUAGES 173

8.1. Introduction 174
8.2. Issues in Database Usage 175
 8.2.1. Functions 175
 8.2.2. Tasks 176
 8.2.3. Query Features 177
8.3. Language Samples 180
 8.3.1. Host-Embedded vs. Self-Contained 186
 8.3.2. Specification vs. Procedural Languages 186
 8.3.3. Linear Keyword vs. Positional Languages 187
8.4. Experimental Results 188
8.5. Practitioner’s Summary 195
8.6. Researcher’s Agenda 195

9. NATURAL LANGUAGE 197

9.1. Natural Language Systems 198
9.2. Pros and Cons 206
9.3. Experimental Studies 209
9.4. Practitioner’s Summary 213
9.5. Researcher’s Agenda 213

10. INTERACTIVE INTERFACE ISSUES 215

10.1. Introduction 216
10.2. Hardware Options 216
 10.2.1. Keyboards 216
 10.2.2. Soft vs. Hard Copy 218
 10.2.3. Cursor Control Devices 219
 10.2.4. Audio Output 219
 10.2.5. Speech Recognition Systems 220
 10.2.6. Graphics Output, Input, and Interaction 222
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.3. Psychological Issues</td>
<td>224</td>
</tr>
<tr>
<td>10.3.1. Short- and Long-Term Memory</td>
<td>224</td>
</tr>
<tr>
<td>10.3.2. Closure</td>
<td>225</td>
</tr>
<tr>
<td>10.3.3. Attitude and Anxiety</td>
<td>226</td>
</tr>
<tr>
<td>10.3.4. Control</td>
<td>226</td>
</tr>
<tr>
<td>10.4. Response Time</td>
<td>228</td>
</tr>
<tr>
<td>10.5. Time-Sharing vs. Batch Processing</td>
<td>232</td>
</tr>
<tr>
<td>10.6. Text Editor Usage</td>
<td>236</td>
</tr>
<tr>
<td>10.7. Menu Selection, Fill-in-the-Blank and Parametric Modes</td>
<td>238</td>
</tr>
<tr>
<td>10.8. Error Handling</td>
<td>241</td>
</tr>
<tr>
<td>10.9. Practitioner’s Summary</td>
<td>243</td>
</tr>
<tr>
<td>10.10. Researcher’s Agenda</td>
<td>244</td>
</tr>
<tr>
<td>11. DESIGNING INTERACTIVE SYSTEMS</td>
<td>247</td>
</tr>
<tr>
<td>11.1. Introduction to Design</td>
<td>248</td>
</tr>
<tr>
<td>11.2. Goals for Interactive Systems Designers</td>
<td>249</td>
</tr>
<tr>
<td>11.2.1. Simplicity</td>
<td>255</td>
</tr>
<tr>
<td>11.2.2. Power</td>
<td>255</td>
</tr>
<tr>
<td>11.2.3. User Satisfaction</td>
<td>256</td>
</tr>
<tr>
<td>11.2.4. Reasonable Cost</td>
<td>256</td>
</tr>
<tr>
<td>11.3. Design Process for Interactive Systems</td>
<td>257</td>
</tr>
<tr>
<td>11.3.1. Collect Information</td>
<td>257</td>
</tr>
<tr>
<td>11.3.2. Design Semantic Structures</td>
<td>258</td>
</tr>
<tr>
<td>11.3.3. Design Syntactic Structures</td>
<td>262</td>
</tr>
<tr>
<td>11.3.4. Specify Physical Devices</td>
<td>262</td>
</tr>
<tr>
<td>11.3.5. Develop Software</td>
<td>263</td>
</tr>
<tr>
<td>11.3.6. Devise Implementation Plan</td>
<td>263</td>
</tr>
<tr>
<td>11.3.7. Nurture the User Community</td>
<td>264</td>
</tr>
<tr>
<td>11.3.8. Prepare Evolutionary Plan</td>
<td>265</td>
</tr>
<tr>
<td>11.4. Practitioner’s Summary</td>
<td>265</td>
</tr>
<tr>
<td>11.5. Researcher’s Agenda</td>
<td>265</td>
</tr>
<tr>
<td>12. COMPUTER POWER TO, OF, AND BY THE PEOPLE</td>
<td>269</td>
</tr>
<tr>
<td>BIBLIOGRAPHY</td>
<td>281</td>
</tr>
<tr>
<td>SUGGESTED PROJECTS AND EXERCISES</td>
<td>303</td>
</tr>
<tr>
<td>THE t DISTRIBUTION</td>
<td>309</td>
</tr>
<tr>
<td>NAME INDEX</td>
<td>311</td>
</tr>
<tr>
<td>SUBJECT INDEX</td>
<td>315</td>
</tr>
</tbody>
</table>