Contents

FOREWORD ix
PREFACE xi

I. Introduction 1

1. The Advent of Ultrathin, Well-Controlled Semiconductor Heterostructures 1
2. A Prerequisite: The Mastering of Semiconductor Purity and Interfaces 5

II. The Electronic Properties of Thin Semiconductor Heterostructures 11

3. Quantum Well Energy Levels 11
 a. Conduction Electron Energy Levels 11
 b. Hole Energy Levels 15
4. Triangular Quantum Well Energy Levels 19
5. Two-Dimensional Density of States 20
6. Excitons and Shallow Impurities in Quantum Wells 22
7. Tunneling Structures, Coupled Quantum Wells, and Superlattices 27
 a. The Double-Well Structure 28
 b. The Communicating Multiple-Quantum-Well Structure or Superlattice—Tight-Binding Calculations 28
 c. Tunneling 33
 d. Continuum States 37
8. Modulation Doping of Heterostructures 38
 a. Charge Transfer in Modulation-Doped Heterojunctions 39
 b. Electrostatic Potential 42
 c. Energy-Level Calculation 43
 d. Thermodynamic Equilibrium 44
9. $n-i-p-i$ Structures 51

III. Optical Properties of Thin Heterostructures 57

10. Optical Matrix Element 57
 a. Interband Transitions 57
 b. Oscillator Strength of Interband Transitions 60
c. Intraband (Intersubband) Transitions 61
d. Excitonic Effects 62

11. Selection Rules 65
 a. Interband Transitions 65
 b. Exciton Effects 69
 c. Intraband Transitions 69

12. Energy Levels, Band Discontinuities, and Layer Fluctuations 69
13. Low-Temperature Luminescence 79
14. Carrier and Exciton Dynamics 83
15. Inelastic Light Scattering 85
16. Nonlinear and Electro-optic Effects 87
 a. Quantum-Confined Wavefunctions and Electro-optic Effects 88
 b. Nonlinear Effects 93
 c. Electro-optic Applications 96
 d. Nonlinear Effects Applications 98

IV. Electrical Properties of Thin Heterostructures 101
17. Mobility in Parallel Transport 101
18. Hot Electron Effects in Parallel Transport 112
19. Perpendicular Transport 116
20. Quantum Transport 123
 a. Effect of a Magnetic Field on 2D Electrons 123
 b. The Shubnikov–de Haas Measurements 129
 c. Quantum Hall Effect 131

V. Applications of Quantum Semiconductor Structures 141
21. Electronic Devices Based on Parallel Transport 141
 a. Simplest Model of FET 143
 b. More Refined Models 146
 c. Performance Analysis 149
 d. Variants of Heterojunction FETs 152
22. Electronic Devices Based on Perpendicular Transport 155
 a. Two-Terminal Devices 155
 b. Three-Terminal Devices 158
23. Quantum Well Lasers 165
 a. Basic Description of Laser Action 165
 b. Single Quantum Well (SQW) Laser Operation 171
 c. Multiple Quantum Well Lasers 176
 d. The Temperature Dependence of the Threshold Current 178
 e. Additional Features of Quantum Well Lasers 179
 f. The GaInAsP/InP Laser Case 184
 g. Other Materials Systems 187

VI. Towards 1D and 0D Physics and Devices 189
24. One- and Zero-Dimensional Systems 189
25. 1D and 0D Semiconductor Fabrication Techniques 191
CONTENTS

26. Electrical Applications of 1D and 0D Structures 197
27. Devices Based on 1D and 0D Effects 205
28. 1D and 0D Optical Phenomena 209
29. 1D and 0D Optical Devices 215

SELECTED BIBLIOGRAPHY 217
REFERENCES 219
INDEX 247