PART I POLYMER STRUCTURE AND PROPERTIES

1. Basic principles, 3
 1.1 Introduction and historical development, 3
 1.2 Definitions, 7
 1.3 Polymerization processes, 12
 1.4 Step-reaction polymerization, 14
 1.5 Chain-reaction polymerization, 16
 1.6 Step-reaction addition and chain-reaction condensation, 17
 1.7 Nomenclature, 18
 1.7.1 Vinyl polymers, 19
 1.7.2 Vinyl copolymers, 21
 1.7.3 Nonvinyl polymers, 25
 1.7.4 Nonvinyl copolymers, 28
 1.7.5 Abbreviations, 29
 1.8 Industrial polymers, 29
 1.8.1 Plastics, 31
 1.8.2 Fibers, 33
 1.8.3 Rubber (elastomers), 34
 1.8.4 Coatings and adhesives, 34
 References, 35
 Review exercises, 37

2. Molecular weight and polymer solutions, 40
 2.1 Number average and weight average molecular weight, 40
 2.2 Polymer solutions, 43
 2.3 Measurement of number average molecular weight, 48
 2.3.1 End-group analysis, 48
 2.3.2 Membrane osmometry, 49
 2.3.3 Cryoscopy and ebulliometry, 52
 2.3.4 Vapor pressure osmometry, 52
 2.3.5 Refractive index measurements, 53
 2.4 Measurement of weight average molecular weight, 53
 2.4.1 Light scattering, 53
 2.4.2 Ultracentrifugation, 54
 2.4.3 Field desorption mass spectrometry (FDMS), 56
xii Contents

2.5 Viscometry, 57
2.6 Molecular weight distribution, 59
 2.6.1 Gel permeation chromatography (GPC), 61
 2.6.2 Fractional solution, 63
 2.6.3 Fractional precipitation, 65
 2.6.4 Thin-layer chromatography (TLC), 65
 2.6.5 Ultracentrifugation, 66
References, 66
Review exercises, 67

3. Chemical structure and polymer morphology, 70

3.1 Introduction, 70
3.2 Molecular weight and intermolecular forces, 71
3.3 The amorphous state—rheology, 72
3.4 Glass transition temperature, 80
3.5 Stereochemistry, 85
3.6 Crystallinity, 91
3.7 Liquid crystallinity, 95
3.8 Chemical crosslinking, 98
3.9 Physical crosslinking, 99
3.10 Polymer blends, 100
 References, 104
 Review exercises, 107

4. Chemical structure and polymer properties, 110

4.1 Introduction, 110
4.2 Fabrication methods, 110
4.3 Mechanical properties, 114
4.4 Thermal stability, 122
4.5 Flammability and flame resistance, 126
4.6 Chemical resistance, 128
4.7 Degradability, 131
4.8 Electrical conductivity, 134
4.9 Additives, 137
 References, 141
 Review exercises, 144

5. Evaluation, characterization, and analysis of polymers, 146

5.1 Introduction, 146
5.2 Chemical methods of analysis, 147
5.3 Spectroscopic methods of analysis, 148
 5.3.1 Infrared, 148
 5.3.2 Raman, 149
5.3.3 Nuclear magnetic resonance, 151
5.3.4 Electron spin resonance, 156
5.3.5 Ultraviolet (UV)-visible, 157
5.3.6 Fluorescence, 157

5.4 X-ray, electron, and neutron scattering, 158
5.4.1 X-ray scattering, 158
5.4.2 Electron scattering, 159
5.4.3 Neutron scattering, 160

5.5 Characterization and analysis of polymer surfaces, 160
5.5.1 Scanning electron microscopy (SEM), 161
5.5.2 Attenuated total reflectance spectroscopy (ATR), 161
5.5.3 Photoacoustic spectroscopy (PAS), 162
5.5.4 Electron spectroscopy for chemical analysis (or applications) (ESCA) and Auger electron spectroscopy (AES), 163
5.5.5 Secondary-ion mass spectrometry (SIMS) and ion-scattering spectroscopy (ISS), 166

5.6 Thermal analysis, 167
5.6.1 Differential scanning calorimetry (DSC) and differential thermal analysis (DTA), 167
5.6.2 Thermomechanical analysis (TMA), 168
5.6.3 Thermogravimetric analysis (TGA), 171
5.6.4 Pyrolysis-gas chromatography (PGC), 171
5.6.5 Flammability testing, 173

5.7 Measurement of mechanical properties, 176
5.8 Evaluation of chemical resistance, 178
5.9 Evaluation of electrical properties, 178
References, 180
Review exercises, 183

PART II VINYL POLYMERS

6. Free radical vinyl polymerization, 189

6.1 Introduction, 189
6.2 Free radical initiators, 191
 6.2.1 Peroxides and hydroperoxides, 191
 6.2.2 Azo compounds, 194
 6.2.3 Redox initiators, 194
 6.2.4 Photoinitiators, 195
 6.2.5 Thermal polymerization, 195
6.3 Techniques of free radical polymerization, 196
 6.3.1 Bulk, 196
 6.3.2 Suspension, 197
6.3.3 Solution, 197
6.3.4 Emulsion, 198
6.4 Kinetics and mechanism of polymerization, 199
6.5 Stereochemistry of polymerization, 209
6.6 Polymerization of dienes, 212
 6.6.1 Isolated dienes, 212
 6.6.2 Conjugated dienes, 213
6.7 Monomer reactivity, 216
6.8 Copolymerization, 221
 References, 229
 Review exercises, 231

7. Vinyl polymerization with ionic and group transfer initiators, 234
7.1 Introduction, 234
7.2 Cationic polymerization, 235
 7.2.1 Cationic initiators, 235
 7.2.2 Mechanism, kinetics, and reactivity in cationic polymerization, 237
 7.2.3 Stereochemistry of cationic polymerization, 244
 7.2.4 Cationic copolymerization, 247
 7.2.5 Isomerization in cationic polymerization, 249
7.3 Anionic polymerization, 250
 7.3.1 Anionic initiators, 250
 7.3.2 Mechanism, kinetics, and reactivity in anionic polymerization, 252
 7.3.3 Stereochemistry of anionic polymerization, 256
 7.3.4 Anionic copolymerization, 259
7.4 Group transfer polymerization, 262
 References, 266
 Review exercises, 268

8. Vinyl polymerization with complex coordination catalysts, 271
8.1 Introduction, 271
8.2 Ziegler–Natta catalysts, 273
8.3 Mechanism and reactivity in Ziegler–Natta polymerization, 276
8.4 Stereochemistry of Ziegler–Natta polymerization, 281
8.5 Polymerization of dienes with Ziegler–Natta catalysts, 283
8.6 Metathesis polymerization, 285
8.7 Ziegler–Natta copolymerization, 289
8.8 Supported metal oxide catalysts, 291
8.9 Alfin catalysts, 292
 References, 293
 Review exercises, 294
9. Reactions of vinyl polymers, 296

9.1 Introduction, 296
9.2 Functional group reactions, 297
 9.2.1 Introduction of new functional groups, 297
 9.2.2 Conversion of functional groups, 299
9.3 Ring-forming reactions, 301
9.4 Crosslinking, 303
 9.4.1 Vulcanization, 303
 9.4.2 Radiation crosslinking, 305
 9.4.3 Photochemical crosslinking, 306
 9.4.4 Crosslinking through labile functional groups, 310
 9.4.5 Ionic crosslinking, 311
9.5 Block and graft copolymer formation, 312
 9.5.1 Block copolymers, 312
 9.5.2 Graft copolymers, 313
9.6 Polymer degradation, 317
 9.6.1 Chemical degradation, 317
 9.6.2 Thermal degradation, 318
 9.6.3 Degradation by radiation, 320
References, 321
Review exercises, 323

PART III NONVINYL POLYMERS

10. Step-reaction and ring-opening polymerization, 329

10.1 Introduction, 329
10.2 Step-reaction polymerization—kinetics, 329
10.3 Stoichiometric imbalance, 335
10.4 Molecular weight distribution, 337
10.5 Network step polymerization, 339
10.6 Step-reaction copolymerization, 342
10.7 Step polymerization techniques, 343
10.8 Ring-opening polymerization, 346
References, 349
Review exercises, 350

11. Polyethers, polysulfides, and related polymers, 352

11.1 Introduction, 352
11.2 Preparation of polyethers by chain-reaction and ring-opening polymerization, 352
 11.2.1 Polymerization of carbonyl compounds, 352
 11.2.2 Stereochemistry of aldehyde polymerization, 358
Contents

11.2.3 **Polymerization of cyclic ethers**, 360
11.2.4 **Stereochemistry of epoxide polymerization**, 367

11.3 **Preparation of polyethers by step-reaction polymerization**, 368
11.3.1 **Synthesis of polyethers from glycols and bisphenols**, 368
11.3.2 **Polyacetals and polyketals**, 370
11.3.3 **Poly(phenylene oxide)s**, 371
11.3.4 **Epoxy resins**, 374

11.4 **Polysulfides, poly(alkylene polysulfide)s, and polysulfones**, 379
11.4.1 **Polysulfides**, 379
11.4.2 **Poly(alkylene polysulfide)s**, 383
11.4.3 **Polysulfones**, 384

References, 385
Review exercises, 388

12. **Polyesters**, 392

12.1 **Introduction**, 392
12.2 **Linear polyesters**, 393
12.2.1 **Preparation of polyesters by polycondensation reactions**, 393
12.2.2 **Polycarbonates**, 400
12.2.3 **Preparation of polyesters by ring-opening polymerization**, 403
12.2.4 **Miscellaneous methods of preparing linear polyesters**, 407

12.3 **Crosslinked polyesters**, 410
12.3.1 **Saturated polyester resins**, 410
12.3.2 **Unsaturated polyesters**, 413

References, 415
Review exercises, 417

13. **Polyamides and related polymers**, 421

13.1 **Introduction**, 421
13.2 **Polyamides**, 424
13.2.1 **Preparation of polyamides by polycondensation reactions**, 424
13.2.2 **Polymerization of lactams**, 427
13.2.3 **Miscellaneous methods of preparing polyamides**, 432
13.2.4 **Properties of polyamides**, 435
13.2.5 **Polyureas**, 437

13.3 **Polymers related to polyamides**, 440
13.3.1 **Polyurethanes**, 440
13.3.2 **Polyurethane foams**, 444
13.3.3 **Polyhydrazides and related polymers**, 446
13.3.4 **Polyimides**, 447
13.3.5 **Heterocyclic polymers derived from polyamides and related polymers**, 453

References, 462
Review exercises, 465
14. Phenol-, urea-, and melamine-formaldehyde polymers, 470
14.1 Introduction, 470
14.2 Phenol–formaldehyde polymers: resoles, 471
14.3 Phenol–formaldehyde polymers: novolacs, 475
14.4 Chemical modifications of phenolic resins, 478
14.5 Urea–formaldehyde polymers, 481
14.6 Melamine–formaldehyde polymers, 483
References, 484
Review exercises, 485

15. Inorganic and partially inorganic polymers, 487
15.1 Introduction, 487
15.2 Poly(sulfur nitride), 488
15.3 Polysiloxanes, 489
15.4 Polysilanes, 493
15.5 Phosphonitrilic polymers, 494
15.6 Carborane polymers, 497
15.7 Organometallic polymers, 499
15.8 Coordination polymers, 502
References, 506
Review exercises, 509

16. Miscellaneous organic polymers, 511
16.1 Introduction, 511
16.2 Miscellaneous unsaturated polymers, 511
 16.2.1 Polycarbodiimides, 511
 16.2.2 Polylimines, 513
 16.2.3 Polymers containing carbon–carbon double bonds, 514
 16.2.4 Azo polymers, 515
 16.2.5 Polymers containing carbon–carbon triple bonds, 516
16.3 Miscellaneous heterocyclic polymers, 517
 16.3.1 Polyquinoxalines and polypyrazines, 517
 16.3.2 Polyazrazoles and polyimidazoles, 519
 16.3.3 Poly(as-triazine)s and polytriazolines, 520
 16.3.4 Polynaphthylamines and polyanthrazolines, 521
 16.3.5 Polypyrrole, polyfuran, and polythiophene, 522
16.4 Poly(p-phenylene) and poly(p-xylylene), 523
 16.4.1 Poly(p-phenylene), 523
 16.4.2 Poly(p-xylylene), 525
16.5 Friedel–Crafts polymers, 526
16.6 Cycloaddition polymerization, 527
 16.6.1 Diels–Alder polymerization, 527
 16.6.2 2 + 2 Cycloaddition polymerization, 531
Contents

16.7 Ring-opening polymerization of strained cycloalkanes, 533
16.8 Polyanhydrides, 534
16.9 Polyamines, 535
16.10 Charge-transfer polymers, 539
16.11 Ionic polymers, 541
References, 544
Review exercises, 547

17. Natural polymers, 553

17.1 Introduction, 553
17.2 Miscellaneous natural polymers, 554
 17.2.1 Rubber, 554
 17.2.2 Lignin, humus, coal, and kerogen, 556
 17.2.3 Asphaltenes, 558
 17.2.4 Shellac, 559
 17.2.5 Amber, 560
 17.2.6 Tall oil–derived polymers, 560
17.3 Polysaccharides, 561
 17.3.1 Cellulose, 561
 17.3.2 Regenerated cellulose, 563
 17.3.3 Derivatives of cellulose, 564
 17.3.4 Starch, 567
 17.3.5 Derivatives of starch, 569
 17.3.6 Other polysaccharides, 569
17.4 Proteins, 571
 17.4.1 Amino acids, polypeptides, and proteins, 571
 17.4.2 Determination of protein structure, 575
 17.4.3 Synthesis of polypeptides and proteins, 580
 17.4.4 Wool, silk, collagen, and regenerated protein, 583
17.5 Nucleic acids, 585
 17.5.1 Nucleic acid structure, 585
 17.5.2 Nucleic acid synthesis, 592
17.6 Conclusion, 595
References, 595
Review exercises, 598

Appendix A Commonly used polymer abbreviations, 601
Appendix B Polymer literature, 603
Appendix C Sources of laboratory experiments in polymer chemistry, 611
Index, 619