Contents

1. Introduction .. 1
 1.1 What Is Chance, and Why Study It? 3
 1.1.1 Chance vs Determinism 3
 1.1.2 Probability Problems in Optics 5
 1.1.3 Statistical Problems in Optics 5

2. The Axiomatic Approach 7
 2.1 Notion of an Experiment; Events 7
 2.1.1 Event Space; The Space Event 8
 2.1.2 Disjoint Events 9
 2.1.3 The Certain Event 9
 Exercise 2.1 9
 2.2 Definition of Probability 9
 2.3 Relation to Frequency of Occurrence 10
 2.4 Some Elementary Consequences 10
 2.4.1 Additivity Property 11
 2.4.2 Normalization Property 11
 2.5 Marginal Probability 12
 2.6 The “Traditional” Definition of Probability 12
 2.7 Illustrative Problem: A Dice Game 13
 2.8 Illustrative Problem: Let’s (Try to) Take a Trip 14
 2.9 Law of Large Numbers 15
 2.10 Optical Objects and Images as Probability Laws 16
 2.11 Conditional Probability 17
 Exercise 2.2 18
 2.12 The Quantity of Information 19
 2.13 Statistical Independence 21
 2.13.1 Illustrative Problem: Let’s (Try to) Take a Trip (Continued) 22
 2.14 Informationless Messages 23
 2.15 A Definition of Noise 23
 2.16 “Additivity” Property of Information 24
 2.17 Partition Law 25
 2.18 Illustrative Problem: Transmittance Through a Film 25
 2.19 How to Correct a Success Rate for Guesses 26
 Exercise 2.3 27
 2.20 Bayes’ Rule 27
 2.21 Some Optical Applications 28
3. Continuous Random Variables

3.1 Definition of a Random Variable .. 37
3.2 Probability Density Function, Basic Properties 37
3.3 Information Theory Application: Continuous Limit 39
3.4 Optical Application: Continuous Form of Imaging Law 40
3.5 Expected Values, Moments ... 40
3.6 Optical Application: Moments of the Slit Diffraction Pattern ... 41
3.7 Information Theory Application ... 43
3.8 Case of Statistical Independence 44
3.9 Mean of a Sum .. 44
3.10 Optical Application ... 45
3.11 Deterministic Limit; Representations of the Dirac δ-Function 46
3.12 Correspondence Between Discrete and Continuous Cases 47
3.13 Cumulative Probability .. 48
3.14 The Means of an Algebraic Expression: A Simplified Approach ... 48
3.15 A Potpourri of Probability Laws 50
3.15.1 Poisson ... 50
3.15.2 Binomial ... 51
3.15.3 Uniform ... 51
3.15.4 Exponential .. 52
3.15.5 Normal (One-Dimensional) .. 53
3.15.6 Normal (Two-Dimensional) .. 53
3.15.7 Normal (Multi-Dimensional) 55
3.15.8 Skewed Gaussian Case; Gram-Charlier Expansion 56
3.15.9 Optical Application .. 57
3.15.10 Geometric Law ... 58
3.15.11 Cauchy Law ... 59
3.15.12 Sinc² Law .. 59
Exercise 3.1 ... 60

4. Fourier Methods in Probability ... 70

4.1 Characteristic Function Defined .. 70
4.2 Use in Generating Moments ... 71
4.3 An Alternative to Describing RV x 71
4.4 On Optical Applications .. 71
4.5 Shift Theorem .. 72
4.6 Poisson Case ... 72
4.7 Binomial Case ... 73
Contents

5.9 Application of Transformation Theory to Laser Speckle 105
 5.9.1 Physical Layout ... 106
 5.9.2 Plan .. 106
 5.9.3 Statistical Model .. 107
 5.9.4 Marginal Probabilities for Light Amplitudes U_{re}, U_{im} 108
 5.9.5 Correlation Between U_{re} and U_{im} 109
 5.9.6 Joint Probability Law for U_{re}, U_{im} 110
 5.9.7 Probability Laws for Intensity and Phase;
 Transformation of the RV's 110
 5.9.8 Marginal Law for Intensity and Phase 111
 5.9.9 Signal-to-Noise (S/N) Ratio in the Speckle Image 111

5.10 Speckle Reduction by Use of a Scanning Aperture 112
 5.10.1 Statistical Model ... 113
 5.10.2 Probability Density for Output Intensity $p_l(v)$ 113
 5.10.3 Moments and S/N Ratio 115
 5.10.4 Standard Form for the Chi-Square Distribution 116

5.11 Calculation of Spot Intensity Profiles
Using Transformation Theory .. 117
 5.11.1 Illustrative Example 118
 5.11.2 Implementation by Ray-Trace 120

5.12 Application of Transformation Theory to a Satellite-Ground
Communication Problem ... 120
 Exercise 5.1 .. 124

6. Bernoulli Trials and Limiting Cases 134
 6.1 Analysis ... 134
 6.2 Illustrative Problems ... 136
 6.2.1 Illustrative Problem: Let's (Try to) Take a Trip:
 The Last Word .. 136
 6.2.2 Illustrative Problem: Mental Telepathy as a
 Communication Link? 137
 6.3 Characteristic Function and Moments 139
 6.4 Optical Application: Checkerboard Model of Granularity 139
 6.5 The Poisson Limit .. 142
 6.5.1 Analysis .. 142
 6.5.2 Example of Degree of Approximation 143
 6.6 Optical Application: The Shot Effect 144
 6.7 Optical Application: Combined Sources 145
 6.8 Poisson Joint Count for Two Detectors - Intensity Interferometry 146
 6.9 The Normal Limit (DeMoivre-Laplace Law) 150
 6.9.1 Derivation ... 150
 6.9.2 Conditions of Use 151
 6.9.3 Use of the Error Function 152
 Exercise 6.1 .. 154
7. The Monte Carlo Calculation

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1 Producing Random Numbers That Obey a Prescribed Probability Law</td>
<td>163</td>
</tr>
<tr>
<td>7.1.1 Illustrative Case</td>
<td>164</td>
</tr>
<tr>
<td>7.1.2 Normal Case</td>
<td>165</td>
</tr>
<tr>
<td>7.2 Analysis of the Photographic Emulsion by Monte Carlo Calculation</td>
<td>165</td>
</tr>
<tr>
<td>7.3 Application of the Monte Carlo Calculation to Remote Sensing</td>
<td>167</td>
</tr>
<tr>
<td>7.4 Monte Carlo Formation of Optical Images</td>
<td>169</td>
</tr>
<tr>
<td>7.4.1 An Example</td>
<td>170</td>
</tr>
<tr>
<td>7.5 Monte Carlo Simulation of Speckle Patterns</td>
<td>171</td>
</tr>
<tr>
<td>Exercise 7.1</td>
<td>172</td>
</tr>
</tbody>
</table>

8. Stochastic Processes

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1 Definition of a Stochastic Process</td>
<td>177</td>
</tr>
<tr>
<td>8.2 Definition of Power Spectrum</td>
<td>178</td>
</tr>
<tr>
<td>8.2.1 Some Examples of Power Spectra</td>
<td>180</td>
</tr>
<tr>
<td>8.3 Definition of Autocorrelation Function; Kinds of Stationarity</td>
<td>181</td>
</tr>
<tr>
<td>8.4 Fourier Transform Theorem</td>
<td>182</td>
</tr>
<tr>
<td>8.5 Case of a “White” Power Spectrum</td>
<td>182</td>
</tr>
<tr>
<td>8.6 Application: Average Transfer Function Through Atmospheric Turbulence</td>
<td>183</td>
</tr>
<tr>
<td>8.6.1 Statistical Model for Phase Fluctuations</td>
<td>185</td>
</tr>
<tr>
<td>8.6.2 A Transfer Function for Turbulence</td>
<td>186</td>
</tr>
<tr>
<td>8.7 Transfer Theorems for Power Spectra</td>
<td>188</td>
</tr>
<tr>
<td>8.7.1 Determining the MTF Using Random Objects</td>
<td>188</td>
</tr>
<tr>
<td>8.7.2 Speckle Interferometry of Labeyrie</td>
<td>190</td>
</tr>
<tr>
<td>8.7.3 Resolution Limits of Speckle Interferometry</td>
<td>192</td>
</tr>
<tr>
<td>Exercise 8.1</td>
<td>194</td>
</tr>
<tr>
<td>8.8 Transfer Theorem for Autocorrelation: The Knox-Thompson Method</td>
<td>197</td>
</tr>
<tr>
<td>8.9 Additive Noise</td>
<td>199</td>
</tr>
<tr>
<td>8.10 Random Noise</td>
<td>201</td>
</tr>
<tr>
<td>8.11 Ergodic Property</td>
<td>202</td>
</tr>
<tr>
<td>Exercise 8.2</td>
<td>203</td>
</tr>
<tr>
<td>8.12 Optimum Restoring Filter</td>
<td>206</td>
</tr>
<tr>
<td>8.12.1 Definition of Restoring Filter</td>
<td>206</td>
</tr>
<tr>
<td>8.12.2 Model</td>
<td>207</td>
</tr>
<tr>
<td>8.12.3 Solution</td>
<td>208</td>
</tr>
<tr>
<td>Exercise 8.3</td>
<td>210</td>
</tr>
<tr>
<td>8.13 Information Content in the Optical Image</td>
<td>211</td>
</tr>
<tr>
<td>8.13.1 Statistical Model</td>
<td>212</td>
</tr>
<tr>
<td>8.13.2 Analysis</td>
<td>212</td>
</tr>
</tbody>
</table>
Contents

8.13.3 Noise Entropy .. 213
8.13.4 Data Entropy ... 214
8.13.5 The Answer .. 215
8.13.6 Interpretation ... 215

8.14 Data Information and Its Ability to be Restored 217
8.15 Superposition Processes; the Shot Noise Process 218
 8.15.1 Probability Law for i 219
 8.15.2 Some Important Averages 219
 8.15.3 Mean Value $\langle i(x_0) \rangle$ 221
 8.15.4 Shot Noise Case 221
 8.15.5 Second Moment $\langle i^2(x_0) \rangle$ 222
 8.15.6 Variance $\sigma^2(x_0)$ 222
 8.15.7 Shot Noise Case 223
 8.15.8 Signal-to-Noise (S/N) Ratio 223
 Exercise 8.4 .. 224
 8.15.9 Autocorrelation Function 225
 8.15.10 Shot Noise Case 226
 8.15.11 Application: An Overlapping Circular Grain Model for the Emulsion .. 226
 8.15.12 Application: Light Fluctuations due to Randomly Tilted Waves, the "Swimming Pool" Effect 228
 Exercise 8.5 .. 231

 9.1 Estimating a Mean from a Finite Sample 234
 9.2 Statistical Model ... 234
 9.3 Analysis .. 235
 9.4 Discussion ... 236
 9.5 Error in a Discrete, Linear Processor: Why Linear Methods Often Fail .. 237
 9.6 Estimating a Probability: Derivation of the Law of Large Numbers .. 239
 9.7 Variance of Error ... 240
 9.8 Illustrative Uses of the Error Expression 241
 9.8.1 Estimating Probabilities from Empirical Rates .. 241
 9.8.2 Aperture Size for Required Accuracy in Transmittance Readings .. 242
 9.9 Probability Law for the Estimated Probability: Confidence Limits .. 243
 9.10 Calculation of the Sample Variance 245
 9.10.1 Unbiased Estimate of the Variance .. 245
 9.10.2 Expected Error in the Sample Variance .. 247
 9.10.3 Illustrative Problems 249
<table>
<thead>
<tr>
<th>Contents</th>
<th>XVII</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.11 Estimating the Signal-to-Noise Ratio; Student’s Probability Law</td>
<td>250</td>
</tr>
<tr>
<td>9.11.1 Probability Law for SNR</td>
<td>251</td>
</tr>
<tr>
<td>9.11.2 Moments of SNR</td>
<td>252</td>
</tr>
<tr>
<td>9.11.3 Limit $c \to 0$; a Student Probability Law</td>
<td>254</td>
</tr>
<tr>
<td>9.12 Properties of a Median Window</td>
<td>254</td>
</tr>
<tr>
<td>9.13 Statistics of the Median</td>
<td>257</td>
</tr>
<tr>
<td>9.13.1 Probability Law for the Median</td>
<td>257</td>
</tr>
<tr>
<td>9.13.2 Laser Speckle Case: Exponential Probability Law</td>
<td>258</td>
</tr>
<tr>
<td>Exercise 9.1</td>
<td>260</td>
</tr>
<tr>
<td>10. Estimating a Probability Law</td>
<td>264</td>
</tr>
<tr>
<td>10.1 Estimating Probability Densities Using Orthogonal Expansions</td>
<td>265</td>
</tr>
<tr>
<td>10.2 Karhunen-Loeve Expansion</td>
<td>268</td>
</tr>
<tr>
<td>10.3 The Multinomial Probability Law</td>
<td>269</td>
</tr>
<tr>
<td>10.3.1 Derivation</td>
<td>269</td>
</tr>
<tr>
<td>10.3.2 Illustrative Example</td>
<td>270</td>
</tr>
<tr>
<td>10.4 Estimating a Probability Law Using Maximum Likelihood</td>
<td>270</td>
</tr>
<tr>
<td>10.4.1 Principle of Maximum Likelihood</td>
<td>271</td>
</tr>
<tr>
<td>10.4.2 Maximum Entropy Estimate</td>
<td>272</td>
</tr>
<tr>
<td>10.4.3 The Search for "Maximum Prior Ignorance"</td>
<td>273</td>
</tr>
<tr>
<td>10.4.4 Other Types of Estimates (Summary)</td>
<td>275</td>
</tr>
<tr>
<td>10.4.5 Return to Maximum Entropy Estimation, Discrete Case</td>
<td>275</td>
</tr>
<tr>
<td>10.4.6 Transition to a Continuous Random Variable</td>
<td>276</td>
</tr>
<tr>
<td>10.4.7 Solution</td>
<td>277</td>
</tr>
<tr>
<td>10.4.8 Maximized H</td>
<td>278</td>
</tr>
<tr>
<td>10.4.9 Illustrative Example: Significance of the Normal Law</td>
<td>278</td>
</tr>
<tr>
<td>10.4.10 The Smoothness Property; Least Biased Aspect</td>
<td>279</td>
</tr>
<tr>
<td>10.4.11 A Well Known Distribution Derived</td>
<td>279</td>
</tr>
<tr>
<td>10.4.12 When Does the Maximum Entropy Estimate Equal the True Law?</td>
<td>281</td>
</tr>
<tr>
<td>10.4.13 Maximum Likelihood Estimation of Optical Objects</td>
<td>282</td>
</tr>
<tr>
<td>10.4.14 Case of Nearly Featureless Objects</td>
<td>284</td>
</tr>
<tr>
<td>Exercise 10.1</td>
<td>286</td>
</tr>
<tr>
<td>11. The Chi-Square Test of Significance</td>
<td>294</td>
</tr>
<tr>
<td>11.1 Forming the χ^2 Statistic</td>
<td>295</td>
</tr>
<tr>
<td>11.2 Probability Law for χ^2 Statistic</td>
<td>297</td>
</tr>
<tr>
<td>11.3 When is a Coin Fixed?</td>
<td>299</td>
</tr>
<tr>
<td>11.4 Equivalence of Chi-Square to Other Statistics; Sufficient Statistics</td>
<td>299</td>
</tr>
<tr>
<td>11.5 When is a Vote Decisive?</td>
<td>301</td>
</tr>
</tbody>
</table>
15.3 The Eigenvalues as Sample Variances 353
15.4 The Data in Terms of Principal Components 353
15.5 Reduction in Data Dimensionality 354
15.6 Return to the H–D Problem 355
15.7 Application to Multispectral Imagery 356
15.8 Error Analysis 358
 Exercise 15.1 361

16. The Controversy Between Bayesians and Classicists 363
16.1 Bayesian Approach to Confidence Limits for
 an Estimated Probability 364
 16.1.1 Probability Law for the Unknown Probability 365
 16.1.2 Assumption of a Uniform Prior 366
 16.1.3 Irrelevance of Choice of Prior Statistic \(p_0(x) \) if \(N \)
 is Large 367
 16.1.4 Limiting Form for \(N \) Large 367
 16.1.5 Illustrative Problem 368
16.2 Laplace’s Rule of Succession 368
 16.2.1 Derivation 369
 Exercise 16.1 371
 16.2.2 Role of the Prior 372
 Exercise 16.2 372
16.3 Prior Probability Law for the Physical Constants 373

17. Introduction to Estimation Methods 374
17.1 Deterministic Parameters: Likelihood Theory 374
 17.1.1 Unbiased Estimators 375
 17.1.2 Maximum Likelihood Estimators 376
 Exercise 17.1 377
 17.1.3 Cramer-Rao Lower Bound on Error 378
 17.1.4 Achieving the Lower Bound 381
 17.1.5 Testing for Efficient Estimators 382
17.2 Random Parameters: Bayesian Estimation Theory 383
 17.2.1 Cost Functions 385
 17.2.2 Risk 386
 17.2.3 MAP Estimates 391
 Exercise 17.2 392
17.3 Estimating Probability Laws: the Use of Fisher Information 399
 17.3.1 Equilibrium States 401
 17.3.2 Application to Quantum Mechanics:
 The Schrödinger Wave Equation 402
 17.3.3 The Klein-Gordon Equation 404
 17.3.4 Application to Diffraction Optics:
 The Helmholtz Wave Equation 404