CONTENTS

1 Introduction
The Fourier Series 3
The Fourier Transform 11
The Impulse Function 17
Summary 19
Problems 19
Bibliography 20

2 Basic Mathematical Background
Fundamental Set Theory 21
Set Algebra 22
Laws of Internal Composition 25
Special Elements of a Set 27
Groups, Fields, and Vector Spaces 28
Functions, Relations, and Sequences 32
Distance and Metric Spaces 35
Concept of Order 37
Concepts from Topology 39
Limits and Continuity 40
Convergence of Sequences 43
Choice of a Norm for Convergence 44
Cauchy Convergence 47
Summary 48
Problems 48
Bibliography 50
6 The Fourier Transform 153

Existence of the Fourier Transform 154
Properties and Behavior of the Fourier Transform 159
The Shifting Theorems 163
The Derivative Theorems 170
Transform of a Transform 173
Symmetry Considerations 174
Uniqueness and Reciprocity 178
Convolution of Two Functions 181
Correlation 193
Self-Reciprocity and the Hermite Functions 198
Summary 202
Problems 203
Bibliography 205

7 Fourier Transform of a Distribution 207

Linearity and Scale Change 210
The Shifting Theorems 211
The Derivative Theorems 214
Symmetry Considerations 219
Fourier Transform of the Comb Distribution 221
Convolution of Distributions 224
Physical Interpretation of Convolution 227
Fourier Transform of a Periodic Function: The Fourier Series 230
Summary 232
Problems 233
Bibliography 234

8 The Discrete Fourier Transform 235

Nth-Order Sequences 235
The Discrete Fourier Transform 237
Properties of the Discrete Fourier Transform 243
Symmetry Relations 253
Convolution of Two Sequences 257
Simultaneous Calculation of Real Transforms 260
The Fast Fourier Transform 263
Summary 266
Problems 266
Bibliography 267

9 Sampling Theory 269

Sampling a Function 270
Aliasing 273
CONTENTS

Computer Calculation of the Fourier Transform 274
Computer-Generated Fourier Series 280
Super-Gaussian Windows 282
Summary 293
Problems 294
Bibliography 295

Appendix: Fourier Transform FORTRAN Subroutine 297

Index 303