Michael S. Zhdanov

Integral Transforms in Geophysics

With 71 Figures

Springer-Verlag
Berlin Heidelberg New York
London Paris Tokyo
Contents

Part I Cauchy-Type Integrals in the Theory of a Plane Geopotential Field

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cauchy-Type Integral</td>
<td>3</td>
</tr>
<tr>
<td>1.1</td>
<td>Definition</td>
<td>3</td>
</tr>
<tr>
<td>1.1.1</td>
<td>Cauchy Integral Formula</td>
<td>3</td>
</tr>
<tr>
<td>1.1.2</td>
<td>Concept of the Cauchy-Type Integral</td>
<td>4</td>
</tr>
<tr>
<td>1.1.3</td>
<td>Piecewise Analytical Functions</td>
<td>6</td>
</tr>
<tr>
<td>1.2</td>
<td>Main Properties</td>
<td>7</td>
</tr>
<tr>
<td>1.2.1</td>
<td>Hölder Condition</td>
<td>7</td>
</tr>
<tr>
<td>1.2.2</td>
<td>Calculation of Singular Integrals in Terms of the Cauchy Principal Value</td>
<td>9</td>
</tr>
<tr>
<td>1.2.3</td>
<td>Sokhotsky-Plemelj Formulas</td>
<td>13</td>
</tr>
<tr>
<td>1.2.4</td>
<td>Generalization of the Sokhotsky-Plemelj Formulas for Piecewise Smooth Curves</td>
<td>14</td>
</tr>
<tr>
<td>1.2.5</td>
<td>Cauchy-Type Integrals Along the Real Axis</td>
<td>16</td>
</tr>
<tr>
<td>1.3</td>
<td>Cauchy and Hilbert Integral Transforms</td>
<td>17</td>
</tr>
<tr>
<td>1.3.1</td>
<td>Integral Boundary Conditions for Analytical Functions</td>
<td>17</td>
</tr>
<tr>
<td>1.3.2</td>
<td>Determination of a Piecewise Analytical Function from a Specified Discontinuity</td>
<td>20</td>
</tr>
<tr>
<td>1.3.3</td>
<td>Inversion Formulas for the Cauchy-Type Integral (Cauchy Integral Transforms)</td>
<td>20</td>
</tr>
<tr>
<td>1.3.4</td>
<td>Hilbert Transforms</td>
<td>22</td>
</tr>
</tbody>
</table>

2 Representation of Plane Geopotential Fields in the Form of the Cauchy-Type Integral | 24 |

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Plane Potential Fields and Their Governing Equations</td>
<td>24</td>
</tr>
<tr>
<td>2.1.1</td>
<td>Vector Field Equations</td>
<td>24</td>
</tr>
<tr>
<td>2.1.2</td>
<td>Concept of a Plane Field</td>
<td>26</td>
</tr>
<tr>
<td>2.1.3</td>
<td>Plane Field Equations</td>
<td>27</td>
</tr>
<tr>
<td>2.1.4</td>
<td>Plane Field Flow Function</td>
<td>28</td>
</tr>
<tr>
<td>2.2</td>
<td>Logarithmic Potentials and the Cauchy-Type Integral</td>
<td>29</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Logarithmic Potentials</td>
<td>29</td>
</tr>
<tr>
<td>2.2.2</td>
<td>Logarithmic Potentials in Complex Coordinates</td>
<td>32</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>2.2.3</td>
<td>Cauchy-Type Integral as a Sum of the Logarithmic Potential of Simple and Double Layers</td>
<td>34</td>
</tr>
<tr>
<td>2.3</td>
<td>Complex Intensity and Potential of a Plane Field</td>
<td>35</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Concept of Complex Intensity of a Plane Field</td>
<td>35</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Complex Intensity Equations</td>
<td>36</td>
</tr>
<tr>
<td>2.3.3</td>
<td>Representation of Complex Intensity in Terms of Field Source Density</td>
<td>37</td>
</tr>
<tr>
<td>2.3.4</td>
<td>Complex Potential</td>
<td>38</td>
</tr>
<tr>
<td>2.4</td>
<td>Direct Solution of the Equation for Complex Field Intensity</td>
<td>39</td>
</tr>
<tr>
<td>2.4.1</td>
<td>Two-Dimensional Ostrogradsky-Gauss Formula in Complex Notation</td>
<td>39</td>
</tr>
<tr>
<td>2.4.2</td>
<td>Pompei Formulas</td>
<td>40</td>
</tr>
<tr>
<td>2.4.3</td>
<td>Solution to the Equation for Complex Intensity</td>
<td>42</td>
</tr>
<tr>
<td>2.5</td>
<td>Representation of the Gravitational Field in Terms of the Cauchy-Type Integral</td>
<td>43</td>
</tr>
<tr>
<td>2.5.1</td>
<td>Complex Intensity of the Gravitational Field</td>
<td>43</td>
</tr>
<tr>
<td>2.5.2</td>
<td>Representation of the Gravitational Field of a Homogeneous Domain in Terms of the Cauchy-Type Integral</td>
<td>44</td>
</tr>
<tr>
<td>2.5.3</td>
<td>Representation of the Gravitational Field of a Domain with an Analytical Mass Distribution in Terms of the Cauchy-Type Integral</td>
<td>46</td>
</tr>
<tr>
<td>2.5.4</td>
<td>Case of Vertical or Horizontal Variations in the Density</td>
<td>47</td>
</tr>
<tr>
<td>2.5.5</td>
<td>Case of Linear Density Variations Along the Coordinate Axis</td>
<td>48</td>
</tr>
<tr>
<td>2.5.6</td>
<td>General Case of Continuous Density Distribution</td>
<td>49</td>
</tr>
<tr>
<td>2.5.7</td>
<td>Calculation of the Gravitational Field of an Infinitely Extended Domain</td>
<td>50</td>
</tr>
<tr>
<td>2.6</td>
<td>Representation of a Fixed Magnetic Field in Terms of the Cauchy-Type Integral</td>
<td>52</td>
</tr>
<tr>
<td>2.6.1</td>
<td>Complex Potential of a Polarized Source</td>
<td>52</td>
</tr>
<tr>
<td>2.6.2</td>
<td>Complex Intensities and Potential of a Magnetic Field</td>
<td>53</td>
</tr>
<tr>
<td>2.6.3</td>
<td>Representation of the Magnetic Potential of a Homogeneous Domain in Terms of the Cauchy-Type Integrals</td>
<td>54</td>
</tr>
<tr>
<td>2.6.4</td>
<td>General Case of Magnetization Distribution</td>
<td>54</td>
</tr>
<tr>
<td>2.6.5</td>
<td>Analytical Distribution of Magnetization</td>
<td>55</td>
</tr>
<tr>
<td>3</td>
<td>Techniques for Separation of Plane Fields</td>
<td>56</td>
</tr>
<tr>
<td>3.1</td>
<td>Separation of Geopotential Fields into External and Internal Parts Using Spectral Decomposition</td>
<td>56</td>
</tr>
<tr>
<td>3.1.1</td>
<td>Statement of the Problem of Plane Field Separation</td>
<td>57</td>
</tr>
<tr>
<td>3.1.2</td>
<td>Spectral Representations of Plane Fields</td>
<td>57</td>
</tr>
</tbody>
</table>
Contents

3.1.3 Determination of the External and Internal Parts of the Scalar Potential and Field (Gauss-Schmiedt Formulas) .. 59
3.2 Kertz-Siebert Technique ... 60
3.2.1 Problem of Separation of Field Complex Intensity 60
3.2.2 Field Separation at Ordinary Points of the Line L 61
3.2.3 Field Separation at Corners of the Line L 62
3.2.4 Kertz-Siebert Formulas ... 63
3.2.5 Equivalence Between the Kertz-Siebert and the Gauss-Schmiedt Formulas ... 64

4 Analytical Continuation of a Plane Field 66
4.1 Fundamentals of Analytical Continuation 66
4.1.1 Taylor Theorem .. 66
4.1.2 Uniqueness of an Analytical Function 68
4.1.3 Concept of Analytical Continuation 70
4.1.4 Concept of the Riemann Surface 71
4.1.5 Weierstrass Continuation of an Analytical Function 71
4.1.6 Singular Points of an Analytical Function 72
4.1.7 Penleve Continuation of an Analytical Function (Principle of Continuity) ... 73
4.1.8 Conformal Mapping ... 73
4.2 Analytical Continuation of the Cauchy-Type Integral Through a Path of Integration ... 75
4.2.1 Analytical Continuation of a Real Analytical Function of a Real Variable ... 75
4.2.2 Concept of an Analytical Arc; the Herglotz-Tsirulsky Equation for the Arc ... 76
4.2.3 Analytical Continuation of a Function Specified Along an Analytical Curve ... 79
4.2.4 Continuation of the Cauchy-Type Integral Through a Path of Integration; Singular Points of the Continued Field ... 80
4.3 Analytical Continuation of a Plane Magnetic Field into a Domain Occupied by Magnetized Masses 82
4.3.1 Analytical Continuation of a Magnetic Potential into a Domain of Analytically Distributed Magnetization 82
4.3.2 Continuation Through a One-Side Herglotz-Tsirulsky Analytical Arc ... 83
4.3.3 Analyticity Condition for the Boundary of a Domain Occupied by Magnetized Masses ... 84
4.3.4 Singular Points of Analytical Continuation of the Magnetic Potential ... 85
4.3.5 Determination of Complex Magnetization of a Body from its Magnetic Potential ... 87
4.4 Analytical Continuation of a Plane Gravitational Field into a Domain Occupied by Attracting Masses 88
4.4.1 Characteristics of the Gravitational Field of a Homogeneous Domain Bounded by an Analytical Curve 88
4.4.2 Continuation of the Gravitational Field into a Domain with an Analytical Density Distribution 90
4.4.3 Case of a Homogeneous Domain Bounded by a Piecewise Analytical Curve 91
4.4.4 Singular Points of the Continued Field, Lying on the Boundary of a Material Body 92
4.5 Integral Techniques for Analytical Continuation of Plane Fields 93
4.5.1 Forms of Analytical Continuation of Plane Fields in Geophysics 93
4.5.2 Reconstruction of a Function Analytical in the Upper Half-Plane from Its Real or Imaginary Part 95
4.5.3 Analytical Continuation of Plane Fields into a Horizontal Layer Using Spectral Decomposition of the Cauchy Kernel 98
4.5.4 Case of Field Specification on the Real Axis. The Zamorev Formulas 101
4.5.5 Downward Analytical Continuation of Functions Having Singularities Both in the Lower and in the Upper Half-Planes 103
4.5.6 Analytical Continuation into Domains with Curvilinear Boundaries 105
4.5.7 Bateman Formula; Continuation of Complex Intensity of the Field into the Lower Half-Plane Using Its Real Part 106

Part II Cauchy-Type Integral Analogs in the Theory of a Three-Dimensional Geopotential Field

5 Three-Dimensional Cauchy-Type Integral Analogs 111
5.1 Three-Dimensional Analog of the Cauchy Integral Formula 111
5.1.1 Vector Statements of the Ostrogradsky-Gauss Theorem 111
5.1.2 Vector Statements of the Stokes Theorem 113
5.1.3 Analog of the Cauchy-Type Integral 114
5.1.4 Relationship Between the Three-Dimensional Analog and the Classical Cauchy Integral Formula 115
5.1.5 Gauss Harmonic Function Theorem 117
5.1.6 Cauchy Formula Analog for an Infinite Domain 118
Contents

5.1.7 Three-Dimensional Analog of the Pompei Formulas . 119
5.2 Definition and Properties of the Three-Dimensional
Cauchy Integral Analog .. 120
5.2.1 Concept of a Three-Dimensional Cauchy Integral
Analog .. 120
5.2.2 Evaluation of Singular Integrals in Terms of the
Cauchy Principal Value .. 124
5.2.3 Three-Dimensional Analogs of the Sokhotsky-Plemelj
Formulas ... 127
5.3 Integral Transforms of the Laplace Vector Fields 128
5.3.1 Integral Boundary Conditions for the Laplace Field . 129
5.3.2 Piecewise Laplace Vector Fields. Determination of
a Piecewise Laplace Field from a Specified
Discontinuity .. 132
5.3.3 Inversion Formulas for the Three-Dimensional
Cauchy Integral Analog .. 133
5.3.4 Three-Dimensional Hilbert Transforms 134
5.4 Cauchy Integral Analogs in Matrix Notation 136
5.4.1 Matrix Representation of the Differentiation
Operators of Scalar and Vector Fields 136
5.4.2 Matrix Representations of Three-Dimensional Cauchy
Integral Analogs .. 138

6 Application of Cauchy Integral Analogs to the
Theory of a Three-Dimensional Geopotential Field .. 140
6.1 Newton Potential and the Three-Dimensional Cauchy
Integral Analog .. 140
6.1.1 Newton Potential .. 140
6.1.2 Newton Potential of Simple Field Sources 141
6.1.3 Newton Potential of Polarized Field Sources 141
6.1.4 Three-Dimensional Cauchy-Type Integral as a Sum of
a Simple and a Double Layer Field 143
6.2 Representation of the Gravitational Field in Terms of
the Cauchy Integral Analog .. 145
6.2.1 Gravitational Field Equations 145
6.2.2 Representation of the Gravitational Field of a Three-
Dimensional Homogeneous Body in Terms of the
Cauchy-Type Integral .. 146
6.2.3 Gravitational Field of a Body with an Arbitrary
Density Distribution ... 148
6.2.4 Case of Vertical or One-Dimensional Horizontal
Variations in the Density ... 150
6.2.5 Some Special Cases of Density Distribution 153
6.2.6 Calculation of the Gravitational Field of a Three-
Dimensional Infinitely Extended Homogeneous
Domain ... 154
6.2.7 Field of an Infinitely Extended Domain Filled with Masses of a Z-Variable Density 158
6.3 Representation of a Fixed Magnetic Field in Terms of the Cauchy Integral Analog .. 159
6.3.1 Intensity and Potential of a Fixed Magnetic Field ... 160
6.3.2 Representation of a Magnetic Field with an Arbitrary Distribution of Magnetized Masses 160
6.3.3 Potential Distribution of Magnetization 162
6.3.4 Laplace Distribution of Magnetization 163
6.3.5 Magnetic Field of a Uniformly Magnetized Body ... 164
6.4 Generalized Kertz-Siebert Technique for Separation of Three-Dimensional Geopotential Fields 165
6.4.1 Statement of the Problem of Separation of a Three-Dimensional Field ... 165
6.4.2 Separation of Fields at Ordinary Points of the Surface .. 166
6.4.3 Separation of Fields at Singular Points of the Surface ... 168
6.4.4 Generalized Kertz-Siebert Formulas 168

7 Analytical Continuation of a Three-Dimensional Geopotential Field ... 170
7.1 Fundamentals of Analytical Continuation of the Laplace Field ... 170
7.1.1 Analytical Nature of Laplace Vector Fields 170
7.1.2 Uniqueness of Laplace Vector Fields and Harmonic Functions ... 172
7.1.3 Concept of Analytical Continuation of a Vector Field and Its Riemann Space .. 173
7.1.4 Continuation of the Laplace Field Using the Taylor Series .. 175
7.1.5 Stal Theorem (Principle of Continuity for the Laplace Field) ... 176
7.2 Analytical Continuation of the Three-Dimensional Cauchy Integral Analog Through the Integration Surface ... 177
7.2.1 Concept of an Analytical Part of the Surface; Surface Equations in a Harmonic Form 177
7.2.2 Relationship Between the Surface Equation in a Harmonic Form and the Plane Curve Equation in the Herglotz-Tsirulsky Form .. 181
7.2.3 Continuation of the Cauchy-Type Integral Through the Integration Surface .. 182
7.3 Analytical Continuation of a Three-Dimensional Gravitational Field into a Homogeneous Material Body 182
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.3.1</td>
<td>Properties of the Gravitational Field of a Body Bounded by an Analytical Surface</td>
<td>183</td>
</tr>
<tr>
<td>7.3.2</td>
<td>Relationship Between the Shape of the Surface of a Three-Dimensional Homogeneous Material Body and the Location of Singularities of the Gravitational Field Continued Analytically into the Body</td>
<td>186</td>
</tr>
<tr>
<td>7.3.3</td>
<td>Definition of the Shape of the Surface of Three-Dimensional Material Bodies by Analytical Continuation of the Gravitational Field</td>
<td>189</td>
</tr>
<tr>
<td>7.4</td>
<td>Continuation of the Gravitational and Magnetic Fields into a Domain with an Arbitrary Analytical Distribution of Field Sources</td>
<td>190</td>
</tr>
<tr>
<td>7.4.1</td>
<td>Analytical Representations of Fields Continued into Masses</td>
<td>191</td>
</tr>
<tr>
<td>7.4.2</td>
<td>Case of a Domain Bounded by an Analytical Surface</td>
<td>192</td>
</tr>
<tr>
<td>7.4.3</td>
<td>Case of a Domain Bounded by a Piecewise Analytical Surface</td>
<td>193</td>
</tr>
<tr>
<td>7.5</td>
<td>Integral Techniques for Analytical Continuation of Three-Dimensional Laplace Fields</td>
<td>195</td>
</tr>
<tr>
<td>7.5.1</td>
<td>Analytical Continuation of the Laplace Field into the Upper Half-Space</td>
<td>195</td>
</tr>
<tr>
<td>7.5.2</td>
<td>Analytical Continuation of the Laplace Field into the Lower Half-Space</td>
<td>197</td>
</tr>
</tbody>
</table>

Part III Stratton-Chu Type Integrals in the Theory of Electromagnetic Fields

8 Stratton-Chu Type Integrals 203

8.1 Electromagnetic Field Equations 203
8.1.1 Maxwell Equations 203
8.1.2 Field in Homogeneous Domains of a Medium 204
8.1.3 Boundary Conditions 205
8.1.4 Monochromatic Field Equations 206
8.1.5 Quasi-Stationary Electromagnetic Field 207
8.1.6 Field Wave Equations 208
8.1.7 Field Equations Allowing for Magnetic Currents and Charges .. 209
8.1.8 Stationary Electromagnetic Field 210
8.2 Integration of Equations for an Arbitrary Vector Field .. 211
8.2.1 Auxiliary Integral Identities 211
8.2.2 Vector Analogs of the Pompei Formulas 212
8.3 Stratton-Chu Integral Formulas 214
8.3.1 Stratton-Chu Formulas for a Transient Electromagnetic Field (General Case) 214
8.3.2 Stratton-Chu Formulas for a Quasi-Stationary Field 217
8.3.3 Wave Model of the Field 219
8.3.4 Case of a Stationary Field 221
8.3.5 Stratton-Chu Formulas for a Monochromatic Field (General Case) 223
8.3.6 Modified Stratton-Chu Formulas for a Monochromatic Field 224
8.3.7 Two-Dimensional Stratton-Chu Formulas 226
8.3.8 Stratton-Chu Formulas as a Cauchy Formula Analog 226
8.4 Stratton-Chu Type Integrals 227
8.4.1 Concept of the Stratton-Chu Type Integral for a Monochromatic Field 227
8.4.2 Properties of the Stratton-Chu Type Integrals 228
8.4.3 Modified Stratton-Chu Type Integrals 231
8.4.4 Matrix Representation 233
8.4.5 Stratton-Chu Type Integrals for a Quasi-Stationary Field 234
8.5 Extension of the Stratton-Chu Formulas to Inhomogeneous Media 236
8.5.1 Green Electromagnetic Tensors and Their Properties 236
8.5.2 Stratton-Chu Formulas for an Inhomogeneous Medium 238
8.5.3 Transition to the Model of a Homogeneous Medium 239
8.5.4 Stratton-Chu Type Integrals in an Inhomogeneous Medium and Their Properties 242
8.6 Integral Transforms of Electromagnetic Fields 246
8.6.1 Integral Boundary Conditions for the Electromagnetic Field on the Boundary of a Homogeneous Domain 247
8.6.2 Integral Boundary Conditions for the Electromagnetic Field on the Boundary of an Inhomogeneous Domain 249
8.6.3 Determination of the Electromagnetic Field from a Specified Discontinuity 250
8.6.4 Inversion Formulas for the Stratton-Chu Type Integrals 251
8.6.5 Stratton-Chu Integral Transforms on a Plane 253
8.7 Techniques for Separation of the Earth’s Electromagnetic Fields 255
8.7.1 Separation of the Electromagnetic Field into External and Internal Parts 255
8.7.2 Separation of the Electromagnetic Field into Normal and Anomalous Parts 258

9 Analytical Continuation of the Electromagnetic Field 262
9.1 General Principles 262
9.1.1 Analytical Nature of the Electromagnetic Field 262
Contents

9.1.2 Concept of Analytical Continuation of the Electromagnetic Field .. 264
9.1.3 Equations of Complete Analytical Functions ... 265
9.1.4 Principle of Continuity for the Electromagnetic Field ... 265
9.1.5 Electromagnetic Field in the Riemann Space ... 268
9.2 Analytical Continuation of the Electromagnetic Field into Geoelectrical Inhomogeneities 269

9.2.1 Analytical Continuation of the Stratton-Chu Type Integral Through the Integration Surface 270
9.2.2 Analytical Continuation of the Electromagnetic Field into a Homogeneous Domain Bounded by an Analytical and Piecewise Analytical Surfaces .. 272

9.3 Techniques for Analytical Continuation of the Electromagnetic Field ... 274

9.3.1 Forms of Analytical Continuation of the Electromagnetic Field in Geoelectrical Problems 274
9.3.2 Problem Statement ... 276
9.3.3 Continuation of the Field into a Layer .. 276
9.3.4 Continuation of a Two-Dimensional Electromagnetic Field ... 281

10 Migration of the Electromagnetic Field ... 284

10.1 Definition of the Concept of Migration ... 284
10.1.1 Definition of a Migration Field ... 285
10.1.2 System of Migration Transforms of Nonstationary Electromagnetic Fields .. 287

10.2 Properties of Migration Fields .. 288
10.2.1 Equation for a Migration Field in Direct Time ... 288
10.2.2 One-, Two-, and Three-Dimensional Migrations of Electromagnetic Source Fields 289
10.2.3 Extreme Values of Migration Fields .. 291
10.2.4 Migration of Theoretical and Model Electromagnetic Fields .. 299

Part IV Kirchhoff-Type Integrals in the Elastic Wave Theory

11 Kirchhoff-Type Integrals ... 307

11.1 Elastic Waves in an Isotropic Medium ... 307
11.1.1 Stresses and Strains in Elastic Bodies .. 307
11.1.2 Equations of Motion of a Homogeneous Isotropic Elastic Medium .. 310

11.1.3 Longitudinal and Transverse Waves in a Homogeneous Isotropic Elastic Medium 311
11.2 Generalized Kirchhoff Integral Formula ... 312
11.2.1 Green Tensor and Vector Formulas .. 312