Victor A. Drits

Electron Diffraction and High-Resolution Electron Microscopy of Mineral Structures

With 126 Figures

Springer-Verlag
Berlin Heidelberg New York
London Paris Tokyo
Contents

Introduction ... 1

1 Geometrical Features of the Crystal and the Reciprocal Lattices ... 4
 1.1 Crystal Structure and Crystal Lattice 4
 1.2 The Bragg Equation. Reciprocal Lattice. Relationships Between the Indices of Lines and Planes in the Direct and Reciprocal Lattices ... 6
 1.3 The Ewald Sphere and the Geometrical Interpretation for Diffraction Patterns 11

2 The Kinematical Theory of Scattering of Electrons by Crystals. Intensity of Diffraction Reflections ... 14
 2.1 Wave-Like Properties of Electrons 14
 2.2 The Kinematical Theory of Scattering of Waves by Crystals 14
 2.3 Behavior of Electrons in Medium, the Schrödinger Equation, Its Solution in the Kinematical Approximation ... 24
 2.4 Atomic Scattering Amplitudes, or f-Curves 29
 2.5 Structure Amplitude and Structure Factor 32
 2.6 Reflection Intensities in Point Electron Diffraction Patterns in Terms of the Kinematical Approximation 34

3 Geometrical Analysis of Point Electron-Diffraction Patterns ... 43
 3.1 Raypath in a Transmission Electron Microscope for Imaging and Selected Area Diffraction 43
 3.2 Methods for Interpretation of Point Diffraction Patterns: Indexing and Determination of Unit Cells 45
 3.3 Simulation of Diffraction Patterns for Objects with Known Unit Cell and Space Symmetry 47
 3.4 Interpretation and Simulation of Diffraction Patterns for Triclinic Lattices with a Fixed Coordinate Plane 48
Contents

3.5 Determination of the Bravais Cell and the Space Group. Secondary Diffraction Effects 53

4 Diffraction Methods in Structure Analysis 55

4.1 Fourier Series and Integrals: Their Role in the Theory of Diffraction 55
4.2 Fourier Series: Representation for the Electrostatic Potential and Use in Structure Analysis 59
4.3 The Trial-And-Error Method 64
4.4 Interatomic Vector Space. Patterson Function: Properties and Application to Structure Analysis 65
4.5 Direct Phasing Methods 68
4.6 Refinement of Atomic Coordinates by the Least-Squares Method 69

5 Dynamical Theory of Electron Diffraction (Two-Beam Approximation) 70

5.1 Quantum-Mechanical Solution 70
5.2 Integrated Diffraction Intensity in Terms of the Two-Beam Dynamical Theory 81
5.3 Criteria for the Range of Validity of the Kinematical Approximation 83

6 Dynamical n-Beam Scattering of Electrons 85

6.1 The “Physical Optics” Approach 85
6.2 Numerical Methods for Calculation of Diffraction Patterns 96

7 Electron Diffraction and High-Resolution Electron Microscopy 102

7.1 Diffraction Effects and Formation of High-Resolution Electron-Microscopic Images 102
7.2 Fraunhofer Diffraction: An Intermediate Stage in the Transfer of Information Between the Object and the Image 103
7.3 Factors Defining the Contrast in Electron-Microscopic Images 107
7.4 Contrast in Electron-Microscopic Images of Thin Crystals 118
7.5 Direct Crystal Structure Determination Methods Under the WPOA 135
7.6 High-Resolution Electron Microscopy (HREM) of Crystals 137
Contents

7.7 HREM and Real Structure of Crystals 142
7.8 Simulation of HREM Images 144
7.9 High-Resolution High-Voltage Electron Microscopy (HRHVEM) 147

8 Oblique-Texture Electron Diffraction 149

8.1 General 149
8.2 OTED Patterns: Peculiarities of Geometrical Arrangement of Reflections and Integrated Intensities 150
8.3 Two-Dimensional Intensity Distribution in OTED Patterns 154
8.4 Factors Affecting Diffracted Intensities 157
8.5 A Technique for OTED Intensity Measurements 159
8.6 Crystal Structure Refinements of Mica Polytypes on the Basis of Electronometric Intensity Measurement 161
8.7 Determination of Hydrogen Positions in Mica Structures by OTED 166
8.8 Study of Octahedral Cation Distribution in 2:1 Layers of Dioctahedral Smectites 167

9 SAED and HREM Study of Mixed-Layer Minerals 177

9.1 Hybrid-Structure Minerals 177
9.2 Structure Analysis of Hybrid Minerals 178
9.3 Crystal Structure of Tochilinite 179
9.4 Structure Analysis of Minerals Related to Tochilinite 188
9.5 The Crystal Structure of Valleriite 193
9.6 A Three-Component Hybrid Mineral Containing Brucite-Like, Sulfide and Silicate Layers 197
9.7 Forms of Structural Heterogeneity 197
9.8 Structure Study of Asbolanes 203
9.9 Analysis of Basal Reflection Intensities in SAED Studies of Mixed-Layer Minerals 208
9.10 Structure Studies of Mixed-Layer Minerals by HREM 213

10 SAED and HREM Study of Order/Disorder and Structural Heterogeneity in Layer Minerals 217

10.1 A New Mica NaMg₃(Si₃.5Mg₀.₅)O₁₀(OH)₂ Having a Talc-Like Stacking Sequence 218
10.2 Diffraction Effects from Layer Structures Having Partially Ordered Cation Distribution 220
10.3 Structural Modulations Resulting from the Lateral Misfit of Octahedral and Tetrahedral Sheets in Phyllosilicates 233
Contents

11 Chain Silicates. New Structural Types: Multiple-Chain and Mixed-Chain Minerals 239

11.1 New Problems in the Structure Study of Chain Silicates 239
11.2 Pyroxenes and Amphiboles: Idealized Structures 240
11.3 Fluorocupferite Mg₇[Si₈O₂₂F₂], a New Amphibole Variety 245
11.4 Crystal Structures of Triple-Chain Silicates 248
11.5 New Minerals Having Regular Mixed-Chain Structures 252
11.6 Some Methodological Aspects in the Interpretation for Point SAED Patterns from Chain Silicates 256
11.7 Direct HREM Observation of the Structural Motif of Asbestiform Chain Silicates 269
11.8 Chain-Width Disorder in Chain Silicates 274
11.9 Contrast Distribution in a-Axis HREM Images for Chain-Silicate Crystals Having Chain-Width Disorder 275
11.10 Structural Features of Chain Silicates Revealed in c-Axis HREM Images ... 281

References .. 285

Subject Index .. 295