RATES OF PHASE TRANSFORMATIONS

R. H. DOREMUS

Materials Engineering Department
Rensselaer Polytechnic Institute
Troy, New York

ACADEMIC PRESS, INC.
Harcourt Brace Jovanovich, Publishers
Orlando San Diego New York Austin
London Montreal Sydney Tokyo Toronto
CONTENTS

Preface

1 INTRODUCTION

1.1 Introduction 1
1.2 Thermodynamics 1

2 DIFFUSION AND PHASE CHANGE

2.1 Introduction 4
2.2 Solutions of the Diffusion Equations 6
2.3 Moving Boundaries 12
2.4 Interface and Diffusion Control 20
2.5 Competing Particles 21
2.6 Nucleation and Growth 24
2.7 Molecules and Diffusion 26
2.8 Summary 29
Problems 29
Bibliography 31

3 THERMODYNAMICS OF INTERFACES

3.1 Introduction 33
3.2 Surface Phases, Surface Energy, and Equilibrium 33
3.3 Solid Surfaces 35
3.4 Shapes of Crystals 39
vi Contents

3.5 Grain Boundaries 41
3.6 Segregation to Interfaces 41
3.7 Effects of Size 43
 Problems 47
 Bibliography 47

4 NUCLEATION OF LIQUID DROPS FROM THE VAPOR

4.1 Introduction 48
4.2 Chemical Potential of Small Drops 49
4.3 Concentration of Critical Nuclei 51
4.4 Rate of Nucleation 52
4.5 Corrections to Eq. (4.16) 53
4.6 Corrections to Eq. (4.13) 54
4.7 Experimental Methods 54
4.8 Experimental Results 57
4.9 Heterogeneous Nucleation 58
 Appendix 59
 Problems 60
 Bibliography 61

5 NUCLEATION FROM CONDENSED PHASES

5.1 Introduction 63
5.2 Nucleation 63
5.3 Heterogeneous Nucleation 67
5.4 Experimental Measurements 68
5.5 Droplet Studies 74
5.6 Spinodal Decomposition 78
 Problems 82
 Bibliography 84

6 PHASE SEPARATION OF LIQUIDS

6.1 Introduction 85
6.2 Droplet Growth 87
6.3 Spinodal Decomposition 88
 Problems 91
 Bibliography 91

7 CRYSTAL GROWTH FROM THE VAPOR

7.1 Surface Structure 92
7.2 Two-Dimensional Nucleation 95
7.3 Emergent Screw Dislocations 96
7.4 Surface Diffusion 98
7.5 Step Motion 99
7.6 Whisker Growth 105
7.7 Experimental Results on Bulk Crystals 108
Problems 108
Bibliography 111

8 SOLIDIFICATION
8.1 Introduction 112
8.2 Heat Flow 112
8.3 Interface Structure 114
8.4 Theory of Growth 116
8.5 Dendritic Growth 119
8.6 Spherulites 121
8.7 Crystallization of Multicomponent Melts 123
Problems 127
Bibliography 128

9 CRYSTAL GROWTH FROM SOLUTION
9.1 Introduction 129
9.2 Solution Transport 130
9.3 Growth of Molecular Crystals 134
9.4 Growth of Ionic Crystals 139
9.5 Flux Growth 142
9.6 Competitive Growth 143
Problems 146
Bibliography 147

10 GRAIN GROWTH
10.1 Introduction 149
10.2 Normal Grain Growth 149
10.3 Grain Boundary Mobility 152
10.4 Recrystallization 154
10.5 Exaggerated Grain Growth 156
Problems 157
Bibliography 157

11 PRECIPITATION IN METALS
11.1 Introduction 158
11.2 Carbon in α-Iron 159
viii Contents

11.3 Copper in Aluminum 163
11.4 Cellular Precipitation 165
 Problems 169
 Bibliography 171

Index 173