Contents

1. Progress in the Physics of Magnetism in the Past Forty-five Years
 By S. Chikazumi (With 10 Figures) .. 1
 1.1 Magnetism of 3d Transition Metals and Alloys 2
 1.2 Magnetism of Rare Earth Metals and Alloys 7
 1.3 Magnetism of Ferrimagnetic Oxides 9
 1.4 Observation of Ferromagnetic Domains 12
 1.5 Experimental Techniques and Environments 13
 1.6 Engineering Applications of Magnetic Materials 14
 1.7 Conclusions .. 17
 References ... 17

2. Generation of Megagauss Magnetic Fields
 and Their Application to Solid State Physics
 By N. Miura (With 28 Figures) 19
 2.1 Various Techniques for Generating Ultra-high Magnetic
 Fields ... 20
 2.2 Electromagnetic Flux-Compression 25
 2.3 Single-Turn Coil Technique 31
 2.4 Magnetism Experiments in Megagauss Fields 34
 2.4.1 Faraday Rotation and Magnetization 34
 2.4.2 Magnetization in Dilute Magnetic Semiconductors . 35
 2.4.3 Spin-Flip Transitions 37
 2.4.4 Magnetization Measurements 40
 2.4.5 Upper Critical Field of High T_c Superconductors .. 41
 References ... 45

3. Magnetism in Metals and Alloys Studied by Neutron Scattering
 By Y. Ishikawa and K. Tajima (With 26 Figures) 48
 3.1 Significance of Neutron Scattering for the Study
 of Magnetism .. 49
 3.2 Studies of Antiferromagnetic Metals with Elastic
 Scattering .. 54
 3.3 Ferromagnetic Metals Studied by Inelastic Scattering 59
 3.4 Spin Dynamics in Localized Spin Systems 62
3.5 Spin Dynamics in Itinerant Electron Systems 65
3.6 Spin Dynamics in Quasi-Localized Spin Systems 71
3.7 Dynamic Behavior of Invar Alloys 75
3.8 Epilogue – The Magnetism of Fe and Ni 77
Addendum 78
References 81

4. Magnetic Properties of 3d Compounds with Special Reference
to Pyrite Type Compounds
By K. Adachi (With 21 Figures) 83
4.1 General Survey of 3d Magnetic Compounds 84
4.2 Experimental Results 87
 4.2.1 Physical Properties 87
 4.2.2 Phase Diagram Constructed from Substitutions 90
 4.2.3 Metal-Insulator Transition of Ni(Si$_{1-x}$Se$_x$)$_2$ 91
 4.2.4 Spin Structure of NiS$_2$ and Its Weak Ferromagnetism 92
 4.2.5 Effect of Nonstoichiometry in NiS$_2$ 94
 4.2.6 Metamagnetism of Co(Si$_{1-x}$Se$_x$)$_2$ 95
 4.2.7 Paramagnetic Susceptibility and Electrical Resistivity of Co(Si$_{1-x}$Se$_x$)$_2$ 99
4.3 Theoretical Interpretation 100
 4.3.1 Electronic Structure 100
 4.3.2 Interpretation of the Phase Diagram 101
 4.3.3 Spin Structure and Weak Ferromagnetism Caused of NiS$_2$ by Four-Body Exchange Interactions 104
 4.3.4 Metamagnetism of Co(Si$_{1-x}$Se$_x$)$_2$ in the Itinerant Electron Model 106
 4.3.5 Magnetic Susceptibility and Electrical Resistivity of Co(Si$_{1-x}$Se$_x$)$_2$ 107
References 109

5. Invar Systems
By Y. Nakamura (With 16 Figures) 111
5.1 Magnetovolume Effects 114
5.2 Invar Type Alloys 120
 5.2.1 Transition Metal Alloys 120
 5.2.2 Rare Earth – Transition Metal Intermetallic Compounds 124
 5.2.3 Actinide Intermetallic Compounds 126
5.3 Elasticity 128
5.4 Conclusions 130
References 131
6. Magnetic Anisotropy and Magnetostriction
By T. Wakiyama (With 23 Figures) .. 133
6.1 Magnetocrystalline Anisotropy ... 134
6.2 Magnetostriction ... 137
6.3 Representative Materials and Topics 138
 6.3.1 Iron-Group Transition Metals and Alloys 138
 6.3.2 Rare-Earth Metals and Alloys 147
6.4 Realization of High Magnetic Permeability. "The Focus of Zero" in Magnetic Anisotropy and Magnetostriction 152
6.5 Induced Magnetic Anisotropy. How to Control the Shape of Magnetization Curves .. 153
 6.5.1 Magnetic Annealing Effect .. 154
 6.5.2 Roll Magnetic Anisotropy .. 156
References ... 157

7. The Intermediate Field Between Pure and Applied Magnetism. Importance of Accurate Measurements of Magnetization Curves
By M. Takahashi (With 7 Figures) .. 159
7.1 Technical Terms and Figures .. 162
7.2 Estimation of Saturation Magnetization and Curie Temperatures ... 164
7.3 Magnetic Anisotropy .. 166
 7.3.1 Problems in the Methods of Obtaining Magnetic Anisotropy from Magnetization Curves 167
 7.3.2 Sign Reversal in Magnetocrystalline Anisotropy 168
7.4 Magnetostriction and Magneto-elastic Energy 170
7.5 Spin Glasses, Hopkinson Effect and the Invar Problem 173
7.6 The Problem of Communication Between Applied Researchers and Those in the "Intermediate Fields" or in Basic Research .. 175
7.7 Conclusion ... 176
References ... 176

8. Amorphous Magnetic Materials
By T. Mizoguchi (With 5 Figures) .. 178
8.1 Magnetization and Temperature Dependence of Amorphous Magnetic Materials .. 178
 8.1.1 Amorphous Ferromagnetic Alloys 179
8.2 Magnetic Anisotropy .. 184
 8.2.1 Macroscopic Magnetic Anisotropy 185
 8.2.2 Microscopic Local Magnetic Anisotropy 188
8.3 Magnetism, Preparation Conditions and Structural Relaxation of Amorphous Alloys .. 190

References .. 193

9. Amorphous Magnetic Alloy Ribbons and Their Applications
By Y. Makino (With 14 Figures) 195

9.1 Materials .. 196
9.1.1 Preparation Methods ... 196
9.1.2 Classification of Amorphous Magnetic Alloys 196
9.1.3 Characteristics and Shortcomings 198
9.1.4 Various Heat Treatments 199

9.2 Applications ... 204

References .. 210

10. Magneto-optical Recording
By N. Imamura (With 19 Figures) 211

10.1 Principles of Recording, Reproducing and Erasing 211
10.2 Requirements for Recording Media 213
10.3 Recording Media .. 215
10.4 Dynamic Read Write Properties 223
10.5 Applications and Other Technologies 228

References .. 229

By Y. Sugita (With 30 Figures) 231

11.1 Physics of Magnetic Bubbles 232
11.1.1 Stability of Magnetic Bubbles 232
11.1.2 Domain Wall Structure of a Magnetic Bubble 234
11.1.3 The Motion of a Magnetic Bubble 236

11.2 Magnetic Bubble Materials 239
11.2.1 Requirements for Magnetic Bubble Materials 239
11.2.2 Fabrication and Magnetic Properties of Garnet Films .. 240
11.2.3 Suppression of Hard Magnetic Bubbles 242

11.3 Magnetic Bubble Devices 245
11.3.1 Outline of Devices ... 245
11.3.2 Permalloy Devices ... 248
11.3.3 Ion Implanted Devices 250
11.4 Magnetic Bubble Memories and Applications 253
 11.4.1 Memory Modules and Drive Circuits 253
 11.4.2 Magnetic Bubble Memories 255
 11.4.3 Applications of Magnetic Bubble Memories 256
11.5 Future Trends of Magnetic Bubble Devices and Memories 257
11.6 Summary ... 258
References ... 258

12. High Density Magnetic Recording. Recent Developments in Magnetic Tapes, Discs and Heads
By E. Hirota (With 14 Figures) 260
12.1 Physics of Magnetic Recording 264
 12.1.1 Recording Process 264
 12.1.2 The Reproduction Process 267
12.2 Magnetic Tapes and Discs 268
 12.2.1 Magnetic Powders for Particulate Media 269
 12.2.2 Thin Film Media ... 272
 12.2.3 Perpendicular Recording Media 274
12.3 Magnetic Heads ... 275
12.4 Future Trends .. 279
References ... 280

13. Magnetic Domains Observed by Electron Holography
By A. Tonomura (With 12 Figures) 282
13.1 Principles of Electron Holography 283
13.2 Principles of Domain Structure Observation 286
13.3 Applications of Magnetic Domain Structure Observation ... 287
13.4 Summary ... 293
References ... 293

Appendix: Notes on Technical Terms 294

Subject Index ... 313