LATIN SQUARES

New Developments in the Theory and Applications

J. DÉNES

Industrial and Scientific Consultant
Formerly Head of Mathematics
Institute for Research and
Co-ordination of Computing Techniques (SZKI)
Budapest, Hungary

and

A.D. KEEDWELL

Department of Mathematical and Computing Sciences
University of Surrey
Guildford, United Kingdom

With specialist contributions by

G.B. BELYAVSKAYA
A.E. BROUWER
T. EVANS
K. HEINRICH
C.C. LINDNER
D.A. PREECE

1991

NORTH-HOLLAND – AMSTERDAM • NEW YORK • OXFORD • TOKYO
CONTENTS

Preface xi
Acknowledgements xiii

CHAPTER 1. INTRODUCTION. (J. Dénes and A. D. Keedwell)
(1) Basic definitions. 1
(2) Orthogonal latin squares. 2
(3) Isotopy and parastrophy. 4

CHAPTER 2. TRANSVERSALS AND COMPLETE MAPPINGS. (J. Dénes and A. D. Keedwell)
(1) Basic facts and definitions. 7
(2) Partial transversals. 9
(3) Number of transversals in a latin square. 14
(4) Sets of mutually orthogonal latin squares with no common transversal. 23
(5) Sets of mutually orthogonal latin squares which are not extendible. 28
(6) Generalizations of the concepts of transversal and complete mapping. 33
ADDITIONAL REMARKS. 39

CHAPTER 3. SEQUENCEABLE AND R-SEQUENCEABLE GROUPS: ROW COMPLETE LATIN SQUARES. (J. Dénes and A. D. Keedwell)
(1) Row-complete latin squares and sequenceable groups. 43
(2) Quasi-complete latin squares, terraces and quasi-sequenceable groups. 58
(3) R-sequenceable and R_h-sequenceable groups. 67
(4) Super P-groups. 75
(5) Tuscan squares and a graph decomposition problem. 79
(6) More results on the sequencing and 2-sequencing of groups. 84
ADDITIONAL REMARKS. 99
CHAPTER 4. LATIN SQUARES WITH AND WITHOUT SUBSQUARES OF PRESCRIBED TYPE. (K. Heinrich) 101
(1) Introduction. 102
(2) Without subsquares. 113
(3) With subsquares. 119
(4) With subsquares and orthogonal. 133
(5) Acknowledgement. 147
ADDITIONAL REMARKS BY THE EDITORS. 147

CHAPTER 5. RECURSIVE CONSTRUCTIONS OF MUTUALLY ORTHOGONAL LATIN SQUARES. (A. E. Brouwer) 149
(1) Introductory definitions. 150
(2) Pairwise balanced designs - definitions. 151
(3) Simple constructions for transversal designs. 152
(3)* Examples. 156
(4) Wilson's construction. 159
(4)* Examples. 161
(5) Weighting and holes. 162
(5)* Examples. 164
(6) Asymptotic results. 165
(7) Table of values of N(v) up to v=200. 166
ADDITIONAL REMARKS BY THE EDITORS. 166

CHAPTER 6. r-ORTHOGONAL LATIN SQUARES. (G. B. Belyavskaya) 169
(1) Some weaker modifications of the concept of orthogonality. 169
(2) r-Orthogonal latin squares and quasigroups. 171
(3) Partial admissibility of quasigroups, its connection with r-orthogonality. 177
(4) Spectra of partial orthogonality of latin squares (quasigroups). 186
(5) Near-orthogonal and perpendicular latin squares. 190
(6) r-Orthogonal sets of latin squares. 195
(7) Applications of r-orthogonal latin squares and problems raised thereby. 200

CHAPTER 7. LATIN SQUARES AND UNIVERSAL ALGEBRA. (T. Evans) 203
(1) Universal algebra preliminaries. 204
(2) Varieties of latin squares. 206
(3) Varieties of orthogonal latin squares. 208
(4) Euler's conjecture. 211
(5) Free algebras and orthogonal latin squares. 212

CHAPTER 8. EMBEDDING THEOREMS FOR PARTIAL LATIN SQUARES. (C. C. Lindner) 217

(1) Introduction. 218
(2) Systems of distinct representatives. 219
(3) The theorems of Ryser and Evans (on latin rectangles and squares). 222
(4) Cruse's theorems (on commutative latin rectangles and squares). 225
(5) Embedding idempotent latin squares. 229
(6) Conjugate quasigroups and identities. 236
(7) Embedding semisymmetric and totally symmetric quasigroups. 240
(8) Embedding Mendelsohn and Steiner triple systems. 243
(9) Summary of embedding theorems. 253
(10) The Evans' conjecture. (Smetaniuk's proof.) 254

APPENDIX (1). Alternative description of Smetaniuk's proof of the Evans' conjecture. 261
APPENDIX (2). Additional Bibliography. 265

CHAPTER 9. LATIN SQUARES AND CODES. (J. Dénes and A. D. Keedwell) 267

(1) Basic facts about error-detecting and correcting codes. 268
(2) Codes based on orthogonal latin squares and their generalizations. 272
(3) Row and column complete latin squares in coding theory. 283
(4) Two-dimensional coding problems. 290
(5) Secret-sharing systems. 303
(6) Miscellaneous results. 308
ADDITIONAL REMARKS. 314

CHAPTER 10. LATIN SQUARES AS EXPERIMENTAL DESIGNS. (D. A. Preece) 317

(1) Introduction. 317
(2) The design and analysis of experiments. 318
(3) Some practical examples of latin squares used as row-and-column designs. 322
(4) Some other uses of latin squares in experimental design. 324
(5) The use of latin squares in experiments with changing treatments. 327
(6) Other "latin" experimental designs. 329
(7) Statistical analysis of latin square designs. 331
(8) Randomization of latin square designs. 338
(9) Polycross designs. 341

CHAPTER 11. LATIN SQUARES AND GEOMETRY. (J. Dénes and A. D. Keedwell)
(1) Complete sets of mutually orthogonal latin squares and projective planes. 343
(2) Projective planes of orders 9, 10, 12 and 15. 346
(3) Non-desarguesian projective planes of prime order. 351
(4) Digraph complete sets of latin squares and incidence matrices. 352
(5) Complete sets of column orthogonal latin squares and affine planes. 358
(6) The Paige-Wexler latin squares. 360
(7) Miscellanea. 373
ADDENDUM. 377

CHAPTER 12. FREQUENCY SQUARES. (J. Dénes and A. D. Keedwell)
(1) F-squares and orthogonal F-squares. 381
(2) Enumeration and classification of F-squares. 388
(3) Completion of partial F-squares. 389
(4) F-rectangles and other generalizations. 392
(5) A generalized Bose construction for orthogonal F-squares. 396
ADDITIONAL REMARKS. 398

Bibliography 399
Subject Index 444