Defects and Structural Phase Transitions

A.P. Levanyuk
A.V. Shubnikov Institute of Crystallography
USSR Academy of Sciences,
Moscow

A.S. Sigov
Moscow Institute of Radioengineering,
Electronics and Automation
Moscow

GORDON AND BREACH SCIENCE PUBLISHERS
New York London Paris Montreux Tokyo Melbourne
CONTENTS

Series Editors' Introduction xi
Preface xiii

CHAPTER 1. Introduction 1

CHAPTER 2. Elements of the Theory of Phase Transitions in Perfect Crystals 7
2.1. Landau Theory 8
2.2. Fluctuation Theory 12
2.3. Specific Features of Kinetics Near Phase Transitions 16
2.4. Order Parameter Fluctuations and Scattering Phenomena 19

CHAPTER 3. Phase Transitions in an Imperfect Crystal: General State of Theory and Experiment 23
3.1. Smearing of the Phase Transition 23
3.2. A Small Concentration of Defects 29
 3.2.1. The Effective Hamiltonian 29
 3.2.2. Temperature Region Close to the Phase Transition 33
 3.2.3. Temperature Regions Not Too Close to the Phase Transition 38
3.3. A Large Concentration of Defects 46
3.4. Annealed and Frozen-In Defects 47

CHAPTER 4. Space Distribution of the Order Parameter Induced by a Point Defect Near the Phase Transition 48
4.1. "Local Field" Components 53
 4.1.1. One-Component Order Parameter 53
 4.1.2. The Multicomponent Order Parameter 56
 4.1.3. Influence of Long-Range Forces 57
4.2. The "Local Transition Temperature" Component 65

CHAPTER 5. Phase Transition Anomalies in Imperfect Crystals: Thermodynamic Quantities and Kinetic Coefficients 67
5.1. Thermodynamic Properties 70
CONTENTS

5.1. Defects of the "Random Local Field" Type in Nonferroelectric and Nonferroelastic Crystals
5.1.1. Defects of the "Random Local Field" Type in Nonferroelectric and Nonferroelastic Crystals 70
5.1.2. Defects of "Random Local Field" Type: Influence of Long-Range Forces 80
5.1.3. Defects of the "Random Local Transition Temperature" Type 83
5.1.4. General Discussion 88

5.2. Dynamic Response Functions 88
5.2.1. The Response Function for the Order Parameter 89
5.2.2. Dispersion and Attenuation of Sound 95
5.2.3. Concluding Remarks 100

CHAPTER 6. Scattering Phenomena 101

6.1. Elastic Scattering 102
6.1.1. Neutron and X-Ray Scattering 102
6.1.2. Light Scattering 106
6.1.2.1. General Remarks 106
6.1.2.2. Nonferroelectric and Nonferroelastic Phase Transitions 108
6.1.2.3. Proper Ferroelectrics and Proper Ferroelastics 114

6.2. Inelastic Scattering 122
6.2.1. Neutron Scattering and the "Allowed" Light Scattering 124
6.2.2. Forbidden Raman Lines 130

CHAPTER 7. Polarized Defects: Bias Field 136

7.1. Theoretical Background 137
7.2. Some Experimental Data 146

CHAPTER 8. Model Theories 153

8.1. Continuous-Medium Models; Strong T-Defects; Local Phase Transitions 154
8.2. Microscopic Models 166

CHAPTER 9. Miscellaneous 172

9.1. Role of Elastic Strains Near Defects 172
9.2. Dislocation-Induced Anomalies 175
9.3. Plane Defects; The Crystal Surface as the Defect 178
CONTENTS

9.4. The Influence of Defects on the Properties of Incommensurate Phases 180
9.5. Structural Glasses 184

CHAPTER 10. Concluding Remarks 188

References 189
List of Symbols 201
Index 206