Contents

CHAPTER 1
Introduction 1

1.1. Multivariate Statistical Analysis 1
1.2. The Multivariate Normal Distribution 3

CHAPTER 2
The Multivariate Normal Distribution 6

2.1. Introduction 6
2.2. Notions of Multivariate Distributions 7
2.3. The Multivariate Normal Distribution 14
2.4. The Distribution of Linear Combinations of Normally Distributed Variates; Independence of Variates; Marginal Distributions 24
2.5. Conditional Distributions and Multiple Correlation Coefficient 35
2.6. The Characteristic Function; Moments 43
Problems 50

CHAPTER 3
Estimation of the Mean Vector and the Covariance Matrix 59

3.1. Introduction 59
3.2. The Maximum Likelihood Estimators of the Mean Vector and the Covariance Matrix 60
3.3. The Distribution of the Sample Mean Vector; Inference Concerning the Mean When the Covariance Matrix Is Known 68
CONTENTS

3.4. Theoretical Properties of Estimators of the Mean Vector 77
3.5. Improved Estimation of the Mean 86
Problems 96

CHAPTER 4
The Distributions and Uses of Sample Correlation Coefficients 102
4.1. Introduction 102
4.2. Correlation Coefficient of a Bivariate Sample 103
4.3. Partial Correlation Coefficients; Conditional Distributions 125
4.4. The Multiple Correlation Coefficient 134
Problems 149

CHAPTER 5
The Generalized T^2-Statistic 156
5.1. Introduction 156
5.2. Derivation of the Generalized T^2-Statistic and Its Distribution 157
5.3. Uses of the T^2-Statistic 164
5.4. The Distribution of T^2 Under Alternative Hypotheses; The Power Function 173
5.5. The Two-Sample Problem with Unequal Covariance Matrices 175
5.6. Some Optimal Properties of the T^2-Test 181
Problems 190

CHAPTER 6
Classification of Observations 195
6.1. The Problem of Classification 195
6.2. Standards of Good Classification 196
6.3. Procedures of Classification into One of Two Populations with Known Probability Distributions 199
6.4. Classification into One of Two Known Multivariate Normal Populations 204
6.5. Classification into One of Two Multivariate Normal Populations When the Parameters Are Estimated 208
6.6. Probabilities of Misclassification 217
6.7. Classification into One of Several Populations 224
6.8. Classification into One of Several Multivariate Normal Populations 228
6.9. An Example of Classification into One of Several Multivariate Normal Populations 231
6.10. Classification into One of Two Known Multivariate Normal Populations with Unequal Covariance Matrices 234
Problems 241

CHAPTER 7
The Distribution of the Sample Covariance Matrix and the Sample Generalized Variance 244

7.1. Introduction 244
7.2. The Wishart Distribution 245
7.3. Some Properties of the Wishart Distribution 252
7.4. Cochran’s Theorem 257
7.5. The Generalized Variance 259
7.6. Distribution of the Set of Correlation Coefficients When the Population Covariance Matrix Is Diagonal 266
7.7. The Inverted Wishart Distribution and Bayes Estimation of the Covariance Matrix 268
7.8. Improved Estimation of the Covariance Matrix 273
Problems 279

CHAPTER 8
Testing the General Linear Hypothesis; Multivariate Analysis of Variance 285

8.1. Introduction 285
8.2. Estimators of Parameters in Multivariate Linear Regression 287
8.3. Likelihood Ratio Criteria for Testing Linear Hypotheses About Regression Coefficients 292
8.4. The Distribution of the Likelihood Ratio Criterion When the Hypothesis Is True 298
8.5. An Asymptotic Expansion of the Distribution of the Likelihood Ratio Criterion 311
8.6. Other Criteria for Testing the Linear Hypothesis 321
8.7. Tests of Hypotheses About Matrices of Regression Coefficients and Confidence Regions 333
8.8. Testing Equality of Means of Several Normal Distributions with Common Covariance Matrix 338
8.9. Multivariate Analysis of Variance 342
8.10. Some Optimal Properties of Tests 349
Problems 369

CHAPTER 9
Testing Independence of Sets of Variates 376
9.1. Introduction 376
9.2. The Likelihood Ratio Criterion for Testing Independence of Sets of Variates 376
9.3. The Distribution of the Likelihood Ratio Criterion When the Null Hypothesis Is True 381
9.4. An Asymptotic Expansion of the Distribution of the Likelihood Ratio Criterion 385
9.5. Other Criteria 387
9.6. Step-down Procedures 389
9.7. An Example 392
9.8. The Case of Two Sets of Variates 394
9.9. Admissibility of the Likelihood Ratio Test 397
9.10. Monotonicity of Power Functions of Tests of Independence of Sets 399
Problems 402

CHAPTER 10
Testing Hypotheses of Equality of Covariance Matrices and Equality of Mean Vectors and Covariance Matrices 404
10.1. Introduction 404
10.2. Criteria for Testing Equality of Several Covariance Matrices 405
10.3. Criteria for Testing That Several Normal Distributions Are Identical 408
10.4. Distributions of the Criteria 410
10.5. Asymptotic Expansions of the Distributions of the Criteria 419
10.6. The Case of Two Populations 422
10.7. Testing the Hypothesis That a Covariance Matrix Is Proportional to a Given Matrix; The Sphericity Test 427
10.8. Testing the Hypothesis That a Covariance Matrix Is Equal to a Given Matrix

10.9. Testing the Hypothesis That a Mean Vector and a Covariance Matrix Are Equal to a Given Vector and Matrix

10.10. Admissibility of Tests

Problems

CHAPTER 11
Principal Components

11.1. Introduction

11.2. Definition of Principal Components in the Population

11.3. Maximum Likelihood Estimators of the Principal Components and Their Variances

11.4. Computation of the Maximum Likelihood Estimates of the Principal Components

11.5. An Example

11.6. Statistical Inference

11.7. Testing Hypotheses about the Characteristic Roots of a Covariance Matrix

Problems

CHAPTER 12
Canonical Correlations and Canonical Variables

12.1. Introduction

12.2. Canonical Correlations and Variates in the Population

12.3. Estimation of Canonical Correlations and Variates

12.4. Statistical Inference

12.5. An Example

12.6. Linearly Related Expected Values

12.7. Simultaneous Equations Models

Problems

CHAPTER 13
The Distributions of Characteristic Roots and Vectors

13.1. Introduction

13.2. The Case of Two Wishart Matrices
CONTENTS

13.3. The Case of One Nonsingular Wishart Matrix 532
13.4. Canonical Correlations 538
13.5. Asymptotic Distributions in the Case of One Wishart Matrix 540
13.6. Asymptotic Distributions in the Case of Two Wishart Matrices 544
Problems 548

CHAPTER 14
Factor Analysis 550
14.1. Introduction 550
14.2. The Model 551
14.3. Maximum Likelihood Estimators for Random Orthogonal Factors 557
14.4. Estimation for Fixed Factors 569
14.5. Factor Interpretation and Transformation 570
14.6. Estimation for Identification by Specified Zeros 574
14.7. Estimation of Factor Scores 575
Problems 576

APPENDIX A
Matrix Theory 579
A.1. Definition of a Matrix and Operations on Matrices 579
A.2. Characteristic Roots and Vectors 587
A.3. Partitioned Vectors and Matrices 591
A.4. Some Miscellaneous Results 596
A.5. Gram–Schmidt Orthogonalization and the Solution of Linear Equations 605

APPENDIX B
Tables 609
1. Wilks’ Likelihood Criterion: Factors $C(p, m, M)$ to Adjust to χ^2_{pm} where $M = n - p + 1$ 609
2. Tables of Significance Points for the Lawley-Hotelling Trace Test 616
3. Tables of Significance Points for the Bartlett–Nanda–Pillai Trace Test 630
4. Tables of Significance Points for the Roy Maximum Root Test 634
5. Tables of Significance Points for the Modified Likelihood Ratio Test of Equality of Covariance Matrices Based on Equal Sample Sizes 638
6. Correction Factors for Significance Points for the Sphericity Test 639
7. Significance Points for the Modified Likelihood Ratio Test $\Sigma = \Sigma_0$ 641

References 643

Index 667