ATOMIC AND MOLECULAR COLLISIONS

SIR HARRIE MASSEY, F.R.S.

University College, University of London

TAYLOR & FRANCIS LTD

London

1979
Preface

Introduction

Chapter 1 PARTICLES AND WAVES 1
 1.1 Particles—Elastic Collisions 2
 1.2 Centre of Mass and Laboratory Co-ordinates 5
 1.3 The Specification of Collision Probabilities—the Concept of Collision Cross Section 9
 1.4 The Impact Parameter in a Classical Collision 10
 1.5 Angular Momentum 12
 1.6 Waves 13
 1.7 Interference and Diffraction 15
 1.8 Scattering of Waves—Shadow Scattering 17
 1.9 The Wave Equation 18

Chapter 2 WAVE MECHANICS—WAVE-PARTICLE DUALISM—THE UNCERTAINTY PRINCIPLE—SCATTERING CROSS-SECTIONS 20
 2.1 Wave-Particle Dualism 20
 2.2 Material Waves 23
 2.3 Allowed Values of the Energy and Other Dynamical Quantities 24
 2.4 The Uncertainty Principle 28
 2.5 General Remarks about Wave versus Classical Mechanics 28
 2.6 Collision Cross Sections in Wave Mechanics 29
 2.7 Quantum Theory of Scattering by a Centre of Force 32
 2.8 The Differential Scattering Cross-Section in Wave Mechanics 35
 2.9 The Variation of the Phase Shifts with the Angular Momentum Quantum Number 36
 2.10 Generalization to Collisions Involving Atomic Systems 37

Chapter 3 ATOMS 39
 3.1 Atomic Structure—Some General Features 39
Contents

3.2 Electron Spin 41
3.3 Combination of Angular Momenta 41
3.4 The Hydrogen Atom 42
3.5 Optical Radiation from Excited Hydrogen Atoms—
 Allowed and Forbidden Transitions 43
3.6 Hyperfine Structure 45
3.7 Continuous Spectra 45
3.8 Spontaneous Emission Coefficients 46
3.9 Absorption of Energy by Hydrogen Atoms 46
3.10 Probability Charge Distributions in Different States
 of a Hydrogen Atom 47
3.11 Electric Field of a Hydrogen Atom 49
3.12 Deuterium 50
3.13 The Structure of Complex Atoms—the Pauli Principle 51
3.14 The Ground State of Helium 51
3.15 The Ground State of Lithium 52
3.16 The Ground States of Other Atoms 52
3.17 Excited States of Atoms 54
3.18 Excited States of Helium 55
3.19 Doubly Excited States—Autoionization 55
3.20 Negative Atomic Ions 57
3.21 Doubly Excited States of Negative Ions—
 Autodetachment 58

Chapter 4 MOLECULES 60
4.1 The Interaction between Atoms 60
4.2 Interaction between Hydrogen Atoms 61
4.3 Examples of Other Stable Diatomic Molecules 62
4.4 Excited Electronic States of Molecules 62
4.5 Interactions between Ions and Atoms 62
4.6 Molecular Vibration and Rotation 64
4.7 Behaviour of the Nuclei in a Transition between
 Electronic States—the Franck–Condon Principle 66

Chapter 5 THE SCATTERING OF SLOW ELECTRONS BY
 ATOMS—THE RAMSAUER–TOWNSEND EFFECT 68
5.1 Diffusion of an Electron Swarm in a Gas under the
 Action of an Electric Field 69
5.2 The Measurement of Drift Velocities 71
5.3 The Measurement of Total Cross-Sections for Scattering
 of Electrons by Atoms using Beam Techniques—
 Ramsauer’s Method 73
5.4 Results for the Rare Gases 75
Contents

5.5 Interpretation of Results for the Rare Gases in Terms of Wave Mechanics 75
5.6 The Angular Distribution of the Scattered Electrons—Experimental Methods 80
5.7 Results of Angular Distribution Measurements 83
5.8 Interactions Effective in the Scattering of Slow Electrons by Atoms 86

Chapter 6 ELECTRON SCATTERING BY ATOMS AND MOLECULES—INELASTIC SCATTERING AND RESONANCE EFFECTS 88

6.1 Introduction 88
6.2 Direct and Resonant Scattering 89
6.3 Energy Analysers 91
6.4 Experimental Methods for Studying Fine Structure in Electron Scattering 95
6.5 Typical Measurements of Fine Structure (Resonance) Effects in Elastic Scattering 98
6.6 Measurement of Inelastic Cross-Sections—Differential Cross-Sections 101
6.7 Cross-Sections for Ionization 102
6.8 Cross-Sections for Excitation of Bound States 104

Chapter 7 COLLISIONS INVOLVING ELECTRON CAPTURE—RECOMBINATION AND ATTACHMENT 108

7.1 Recombination and Attachment Coefficient 108
7.2 Radiative Recombination and Attachment 109
7.3 Dissociative Recombination and Attachment 111
7.4 The Experimental Study of Dissociative Recombination 114
7.5 Results of Recombination Measurements—the Rare Gases 120
7.6 Result of Recombination Measurements—Molecular Gases 123
7.7 The Experimental Measurements of Attachment Rates 124
7.8 Some Results of Attachment Experiments—Dissociative Attachment in O₂ 128
7.9 Dissociative Attachment in CO 131
7.10 Attachment to Polyatomic Molecules—Nitrous oxide (N₂O) 132
7.11 Attachment to Sulphur Hexafluoride (SF₆) 134
7.12 Attachment to Other Polyatomic Molecules 135
7.13 The Electron Attachment Detector 135
Contents

Chapter 8 COLLISIONS BETWEEN NEUTRAL ATOMIC AND MOLECULAR SYSTEMS—A GENERAL SURVEY

8.1 Atom–Atom Collisions—Elastic Scattering 139
8.2 Collisions Involving Molecules—Excitation and Transfer of Vibration and Rotation 142
8.3 Dispersion and Absorption of High-Frequency Sound 144
8.4 Persistence of Vibration in Shock Wave Experiments 146
8.5 Some Results of Vibrational Relaxation Measurements 146
8.6 Relaxation in H₂ and D₂—Rotational Persistence 148
8.7 Inelastic Collisions Involving Electronic Excitation 149
8.8 Excitation Transfer—Sensitized Fluorescence 151
8.9 Ionization by Metastable Atom Impact 152
8.10 Production of Ion Pairs in Neutral–Neutral Collisions 153

Chapter 9 SEMI-CLASSICAL COLLISIONS BETWEEN ATOMS

9.1 The Form of the Interaction Energy between Gas Atoms 157
9.2 Classical Theory of Collisions between Gas Atoms—the Deflection Function 158
9.3 Relation between Angle of Deflection and Angle of Scattering 161
9.4 The Angles of Deflection and of Scattering for Interactions between Rare Gas Atoms 163
9.5 The Optical Rainbow 165
9.6 The Glory Singularity 167
9.7 The Classical Differential Cross-Section 167
9.8 Orbiting 168
9.9 The Quantum Scattering Formula near the Classical Limit—The ‘Semi-Geometrical’ Wave Theory of the Optical Rainbow 169
9.10 The Semi-Classical Wave Theory of the Scattering of Particles 171
9.11 Glory Undulations 174
9.12 Collisions between Similar Atoms—Symmetry Interference Effects 175
9.13 Application to Determination of Atomic Interactions 176

Chapter 10 THE EXPERIMENTAL STUDY OF ATOM–ATOM COLLISIONS AT THERMAL ENERGIES

10.1 Experimental Methods—General Remarks 178
10.2 The Production of Atomic Beams 180
10.3 Velocity Selection 183
Contents

10.4 Detection of Atomic Beams | 185
10.5 Some Typical Experiments and Results—Scattering of Alkali Metal Atoms | 186
10.6 Collisions between Helium Atoms—Symmetry Oscillations | 193

Chapter 11 THERMAL COLLISIONS BETWEEN IONIZED AND NEUTRAL ATOMIC AND MOLECULAR SYSTEMS | 200
11.1 The Long-range Polarization Force | 200
11.2 The Condition for Orbiting | 201
11.3 The Mobility of Ions in Gases | 202
11.4 Ionic Reactions | 204
11.5 Orbiting and Ionic Reaction Rates | 206
11.6 Measurement of Ionic Reaction Rates under Thermal or Near-thermal Conditions | 207
11.7 Results of Measurements of Ionic Reaction Rates | 210
11.8 Charge Transfer Reactions | 211
11.9 Associative Detachment | 211
11.10 Rearrangement Collisions | 211
11.11 Cluster Formation | 212

Chapter 12 THE COLLISIONS OF ENERGETIC IONS IN GASES—CHARGE TRANSFER | 213
12.1 Symmetrical Charge Transfer—Theoretical Discussion—H⁺−H Collisions | 213
12.2 The H⁺−H Interactions | 214
12.3 Elastic Scattering and Charge Transfer | 215
12.4 Effect of the Identity of the Nuclei | 216
12.5 Symmetrical Charge Transfer in General | 217
12.6 Experimental Methods and Results—Ion Sources | 218
12.7 Measurement of Total Cross-Sections for Charge Transfer | 219
12.8 Results of Total Charge Transfer Cross-Section Measurements | 221
12.9 Measurement of Charge Transfer Probabilities and of Differential Scattering Cross-Sections | 224
12.10 Results for He⁺−He Collisions and their Interpretation | 226
12.11 Other Reactions of Energetic Ions in gases | 227

Chapter 13 PHOTON COLLISIONS WITH ATOMS AND MOLECULES—PHOTOIONIZATION AND PHOTODETACHMENT | 230
13.1 Introduction | 230
Contents

A4 The Motion of Charged Particles in Magnetic Fields 292
A5 Electron and Ion Optics 294
A6 The Detection and Measurement of Small Fluxes of Electrons, Ions and Neutral Atoms 297
A7 Mass Analysers and Selectors 299

Index 303