INTRODUCTION TO MODERN SET THEORY

JUDITH ROITMAN
Department of Mathematics
University of Kansas
Lawrence, Kansas
CONTENTS

1. Some Mathematical Preliminaries 1

 Introduction. 1
 1.1. Partially Ordered Sets, 2
 1.2. Some Facts about Partially Ordered Sets, 5
 1.3. Equivalence Relations, 7
 1.4. Well-Ordered Sets, 9
 1.5. Mathematical Induction, 13
 1.6. Models, 16
 Exercises for Chapter 1, 20

2. The Axioms, Part I 23

 Introduction, 23
 2.1. The Language, Some Finite Operations, and Extensionality, 25
 2.2. Pairs, 29
 2.3. Cartesian Products, 32
 2.4. Union, Intersection, and Separation, 34
 2.5. Filters and Ideals, 37
 2.6. The Natural Numbers, 39
 2.7. Two Nonconstructive Axioms: Infinity and Power Set, 40
 2.8. A Digression on the Power Set Axiom, 42
 2.9. Replacement, 42
 Exercises for Chapter 2, 45

3. Regularity and Choice 49

 Introduction, 49
 3.1. Transitive Sets, 49
 3.2. A First Look at Ordinals, 51
 3.3. Regularity, 54
CONTENTS

3.4. A World about Classes, 57
3.5. The Axiom of Choice, 58
3.6. Four Forms of the Axiom of Choice, 60
3.7. Models of Regularity and Choice, 63
Exercises for Chapter 3, 64

4. The Foundation of Mathematics

Introduction, 67
4.1. Arithmetic on \(\mathbb{N} \), 68
4.2. Arithmetic on \(\mathbb{Z} \), 68
4.3. Arithmetic on \(\mathbb{Q} \), 69
4.4. Arithmetic on \(\mathbb{R} \), 69
Exercises for Chapter 4, 71

5. Infinite Numbers

Introduction, 73
5.1. Cardinality, 74
5.2. Ordinal Arithmetic, 80
5.3. Cardinal Arithmetic, 87
5.4. Cofinality, 90
5.5. Infinite Operations and More Exponentiation, 92
5.6. Counting, 95
Exercises for Chapter 5, 96

6. Two Models of Set Theory

Introduction, 101
6.1. A Set Model for ZFC, 101
6.2. The Constructible Universe, 104
Exercises for Chapter 6, 109

7. Infinite Combinatorics

Introduction, 111
7.1. Partition Calculus, 111
7.2. Trees, 117
7.3. Measurable Cardinals, 128
7.4. CH, 131