CONTENTS

Preface \hspace{1cm} v
Acknowledgments \hspace{1cm} vii
Symbols, Abbreviations, and Units \hspace{1cm} xvii
Introduction \hspace{1cm} xxi

PART I

THEORY \hspace{1cm} 1

CHAPTER 1

Background \hspace{1cm} 3
1.1 Energy Levels, Populations, and Intensities \hspace{1cm} 3
1.2 Relaxation, T_1 and T_2 \hspace{1cm} 8
1.3 The Nature of Relaxation \hspace{1cm} 12
1.4 The Local Field and Dipole–Dipole Relaxation \hspace{1cm} 13
1.5 Pulses and Saturation \hspace{1cm} 14
1.6 References \hspace{1cm} 22

CHAPTER 2

The Steady-State NOE for Two Spins \hspace{1cm} 23
2.1 The Origin and Form of the NOE \hspace{1cm} 23
2.1.1 Qualitative Considerations \hspace{1cm} 23
2.1.2 The Solomon Equations \hspace{1cm} 27
2.2 Dependence of the NOE on Molecular Motion \hspace{1cm} 30
2.2.1 Correlation Times, Spectral Density Functions, and Transition Probabilities \hspace{1cm} 31
2.2.2 Anisotropic Tumbling \hspace{1cm} 38
2.3 What the Symbols Mean for Two Spins and for Many Spins \hspace{1cm} 39
2.3.1 Relaxation Rates \hspace{1cm} 39
2.3.2 T_1 Measurements and Cross-Relaxation \hspace{1cm} 43
2.4 Effects of Other Relaxation Sources 46
2.4.1 The External Relaxation Rate ρ^* 47
2.4.2 Intermolecular Dipole–Dipole Relaxation 51
2.4.3 Quadrupolar Relaxation 53
2.4.4 Chemical Shift Anisotropy (CSA) Relaxation 54
2.4.5 Scalar Relaxation 55
2.4.6 Spin–Rotation Relaxation 55
2.5 The Heteronuclear NOE 56
2.6 References 60

CHAPTER 3
The Steady-State NOE in Rigid Multispin Systems 63
3.1 The Equations 64
3.1.1 The Solomon Equations for More Than Two Spins 64
3.1.2 Cross-Correlation 67
3.1.3 Two General Solutions to the Multispin Solomon Equations 69
3.1.3.1 Saturation of One Spin 69
3.1.3.2 Saturation of All Spins Except One 70
3.1.4 Internuclear Distances and Steady-State NOE Enhancements 72
3.2 What the Equations Mean 74
3.2.1 General; Direct Enhancements and Spin Diffusion 74
3.2.2 Interpretation at the Extreme Narrowing Limit ($\omega \tau_c \ll 1$) 77
3.2.2.1 Direct Effects 77
3.2.2.2 Indirect Effects 81
3.2.2.3 When Do Indirect Effects Matter? 82
3.2.2.4 Magnetic Equivalence 85
3.2.2.5 T_1 and the 3/2 Effect 87
3.2.2.6 Chemical Equivalence 87
3.2.3 Away from the Extreme Narrowing Limit 89
3.3 In Practice 95
3.3.1 Incomplete Saturation 95
3.3.2 Failure to Reach Steady State 97
3.3.3 Competition from Other Relaxation Sources 97
3.4 References 100

CHAPTER 4
The Kinetics of the NOE 103
4.1 The Initial Rate Approximation 104
4.2 The Truncated Driven NOE (TOE) 105
4.2.1 The Reference Distance 109
CONTENTS

4.2.2 Noninstantaneous Saturation 109
4.2.3 Correlation Times 109
4.2.4 Internal Motion 110
4.2.5 Noninitial Conditions 110
4.2.6 Practical Implications 117
4.3 Further Implications for Interpretation 119
4.3.1 What Is the Steady State? 119
4.3.2 T_1 Values as an Aid to Interpretation 122
4.4 Transient and NOESY Experiments 123
4.5 Calculated Examples of Multispin Systems 135
4.6 References 139

CHAPTER 5
The Effects of Exchange and Internal Motion 141
5.1 Transfer of Saturation 143
5.2 General Equations for the NOE in Systems of Two-Site Exchange 148
5.2.1 Exchange in a Two-Spin System 148
5.2.2 Exchange in Dimethylformamide 157
5.3 Applications to More Complicated Cases of Exchange 160
5.3.1 Averaging of Rates Rather Than Enhancements 161
5.3.2 Two-Site Exchange in a Multispin System 163
5.3.2.1 Olefinic Methoxy Conformations 163
5.3.2.2 Nucleotide Conformations: A Simple Model 164
5.3.2.3 Nucleotide Conformations: The "Best Fit" Approach 167
5.3.3 Allowing for Averaging 170
5.4 Exchange Rates Faster Than Molecular Tumbling 173
5.5 The Transferred NOE 175
5.6 References 181

CHAPTER 6
Complications from Spin-Spin Coupling 183
6.1 Decoupling 183
6.2 Selective Population Transfer 184
6.2.1 Theory 185
6.2.2 Consequences 193
6.3 Strong Coupling 194
6.3.1 $A\{B\}$ Enhancements 195
6.3.2 $AB\{X\}$ Enhancements 196
6.3.3 Scalar Relaxation 203
6.3.3.1 Scalar Relaxation of the First Kind 205
6.3.3.2 Scalar Relaxation of the Second Kind 207
6.4 References 208
PART II
EXPERIMENTAL

CHAPTER 7
One-Dimensional Experiments

7.1 Sample Preparation 211
 7.1.1 Solvent 211
 7.1.2 Solute Concentration 214
 7.1.3 Sample Purification 215
7.2 Setting Up the Steady-State Difference Experiment 217
 7.2.1 Introduction to the Difference Experiment 218
 7.2.2 Minimizing Subtraction Artifacts 220
 7.2.3 Automatic Multiple Experiments 224
 7.2.4 Irradiation Power and Selectivity 227
 7.2.5 Multiplet Irradiation and SPT Suppression 231
 7.2.6 Timing 236
7.3 Display and Calculation of Results 240
7.4 Other 1D Experiments 241
 7.4.1 CW Steady-State Integration 241
 7.4.2 The Truncated Driven NOE (TOE) Experiment 243
 7.4.3 Transient Experiments 247
 7.4.3.1 Selective Pulses 247
 7.4.3.2 Other Considerations 250
7.5 References 251

CHAPTER 8
The Two-Dimensional NOESY Experiment

8.1 One Dimension or Two? 253
 8.1.1 The Negative NOE Regime (ωτc > 1.12) 253
 8.1.2 The Positive NOE Regime (ωτc < 1.12) 254
8.2 Basic Principles 256
8.3 Acquiring a NOESY Spectrum 264
 8.3.1 Fixed Delays and Pulse Widths 264
 8.3.2 Acquisition Times t_1 and t_2 and Spectral Widths SW_1 and SW_2 266
 8.3.3 Quadrature Detection in F_1 and F_2 269
 8.3.4 Phase-Sensitive NOESY 277
8.4 Phase Cycling, Signal Selection, and Artifact Suppression 283
 8.4.1 Rejection of Nonlongitudinal Contributions during τ_m; J-Peak Suppression 284
 8.4.2 Other Forms of J-Peaks; Zero Quantum Coherences and Pulse Angle Effects 285
 8.4.3 Axial Peaks 288
CONTENTS

8.4.4 Quadrature Images 288
8.4.5 t\textsubscript{1} Noise 290

8.5 Data Processing 293
8.5.1 Zero Filling 293
8.5.2 Window Functions 294
8.5.3 Symmetrization and t\textsubscript{1} Noise Removal 296
8.5.4 Integration 298

8.6 Variations 298
8.6.1 Combination with Other 2D Experiments 298
8.6.2 Semiselective Experiments 301
8.6.3 Heteronuclear Experiments 302
8.6.4 Other Variants 303

8.7 References 304

CHAPTER 9

Other Developments 307

9.1 Heteronuclear Experiments 307
9.2 Rotating Frame NOE Experiments 312
9.2.1 Theory 313
9.2.1.1 Spin Locking and Transverse Cross-Relaxation 313
9.2.1.2 Other Effects during Spin Locking 318
9.2.2 Practice 324
9.2.3 Summary 326
9.3 Variation of \omega\tau\textsubscript{c} 327
9.4 Editing and Spectral Simplification 330
9.5 Coping with Large Solvent Signals 337
9.5.1 Methods That Suppress the Solvent Signal 339
9.5.2 Methods That Do Not Excite the Solvent Signal 342
9.5.3 Data Processing 345
9.5.4 Special Problems of 2D Experiments 346
9.6 References 347

PART III

APPLICATIONS 351

CHAPTER 10

Applications of the NOE to Structure Elucidation 353

10.1 General Considerations 353
10.1.1 Why Structural and Conformational Problems Are the Same 354
10.1.2 Spectra and Assignments 355
10.1.3 Reporting Results and Interpretation 357
10.1.4 Miscellaneous 359
10.2 Aromatic Substitution and Ring Fusion Patterns: Simple Cases 359
10.3 Aromatic Substitution and Ring Fusion Patterns: More Complex Cases 370
10.3.1 Petroporphyrins 370
10.3.2 Isoquinoline and Related Alkaloids 374
10.4 Double Bond Isomers 380
10.5 Saturated Ring Systems: Simple Cases 386
10.5.1 Substituent Stereochemistry 387
10.5.2 Ring Fusion Stereochemistry 396
10.6 Saturated Ring Systems: More Complex Cases 408
10.6.1 Pulvomycin 410
10.6.2 Penitrem A 413
10.6.3 Other Examples 416
10.7 References 419

CHAPTER 11
Applications of the NOE to Conformational Analysis 421
11.1 General Considerations 421
11.1.1 Why Structural and Conformational Problems Are Different 421
11.1.2 Multiple Conformations 423
11.2 Local Conformational Detail in Small Molecules 424
11.2.1 Slowly Exchanging Equilibria 424
11.2.2 Rapidly Exchanging Equilibria: A Hypothetical Example, $X-\text{CH}_2\text{OH}$ 426
11.2.3 Rapidly Exchanging Equilibria: Real Examples 428
11.3 Conformational Analysis of Medium-Sized Molecules 437
11.4 References 448

CHAPTER 12
Biopolymers 451
12.1 Peptides and Proteins 451
12.1.1 Assignment: General 453
12.1.2 Sequential Assignment Method 457
12.1.3 Crystal/Sequence Method 458
12.1.3.1 Techniques Requiring No Structural Assumptions 459
12.1.3.2 Techniques Requiring Structural Assumptions 459
CONTENTS

12.1.4 Structure Determination 460
 12.1.4.1 Small Cyclic Peptides 462
 12.1.4.2 Acyclic Peptides 463
 12.1.4.3 Small Proteins: General 463
 12.1.4.4 BUSI IIA: Distance Geometry 464
 12.1.4.5 Metallothionein-2 467
 12.1.4.6 Lac Repressor Headpiece: Molecular Dynamics 469
 12.1.4.7 Large Proteins 473

12.2 Polynucleotides 474
 12.2.1 Structures and Conformations 477
 12.2.2 A, B, or Z? 482
 12.2.3 Sequential Assignment 484
 12.2.4 Sequence-Dependent Conformation 488
 12.2.5 Interactions with Other Molecules 493

12.3 Oligosaccharides 494
 12.3.1 Sequence and Linkage Determination 495
 12.3.2 Conformation 496

12.4 References 498

APPENDIX I

Equations for Enhancements Involving Groups of Equivalent Spins 503

APPENDIX II

Quantum Mechanics and Transition Probabilities 505

Index 515