Electrostatics:
Principles, Problems and Applications

Jean Cross
CSIRO Division of Textile Physics, Ryde, Australia

Adam Hilger, Bristol
Contents

| Preface | ix |
| Notation | xi |

1 Historical Background and Elementary Theory

1.1 Historical background

1.2 Fundamental definitions

1.3 Orders of magnitude

1.4 Summary of electrostatic equations in uniform fields

1.5 Gauss’s law—the electric field due to an assembly of charges

2 Electrification of Solids and Liquids

2.1 Contact and frictional charging

2.2 Corona charging

2.3 Charging by the capture of small particles

2.4 Induction charging

2.5 Double-layer charging

References

3 Measurements and Instrumentation

3.1 Introduction

3.2 Potential dividers and resistance probes

3.3 Electrometers and electrostatic voltmeters

3.4 Field meters and non-contacting voltmeters

3.5 Charge measurement—the Faraday cup

3.6 Measurement of the charge and mobility of individual particles

3.7 Field and potential probes

3.8 The use of the Kerr and Pockels effect for measurement of electric fields
Contents

3.9 Capacitance meters 128
3.10 Measurement of resistance and resistivity 129
3.11 Energy of electrostatic sparks 136
References 140

4 Electrostatics in Gas Filtration

4.1 Introduction 144
4.2 Electrostatic precipitation 146
4.3 Electron beam desulphurisation and denitrisation 163
4.4 Electrostatically enhanced cyclone separators 164
4.5 Electrostatic scrubbers and granular bed filters 166
4.6 Electrostatically enhanced fabric filters 183
Appendix 189
References 192

5 Miscellaneous Applications

5.1 Electrostatic atomisation 198
5.2 Electrostatic spray coating 209
5.3 Electrostatic separation 237
5.4 Electrokinetic phenomena in liquids 248
5.5 Dielectrophoresis 269
5.6 Applications of the corona discharge 276
5.7 Electrodynamic containment and control of particles 285
5.8 Applications of electromechanical forces 294
5.9 Electrostatic copying 299
5.10 Electrostatics in the textile industry 302
5.11 Electrostatic crystals 306
5.12 Electrostatic generators 308
References 312

6 Hazards and Problems

6.1 Fire and explosion hazards 326
6.2 Electrostatic sparks 342
6.3 Non-electrostatic sparks 366
6.4 Electrostatic eliminators 369
6.5 Antistatic agents 376
6.6 Electrostatic problems in the electronics industry 383
6.7 Adhesion 386
Appendix 410
References 415

7 Theory

7.1 Fundamental laws of electrostatics 425
7.2 Capacitance and capacitors 434
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.3</td>
<td>Polarisation</td>
<td>437</td>
</tr>
<tr>
<td>7.4</td>
<td>Identification of field lines and equipotentials</td>
<td>442</td>
</tr>
<tr>
<td>7.5</td>
<td>Electric field and potential by solution of Laplace's equation</td>
<td>460</td>
</tr>
<tr>
<td>7.6</td>
<td>Earnshaw's theorem</td>
<td>477</td>
</tr>
<tr>
<td>7.7</td>
<td>Corona discharge theory</td>
<td>477</td>
</tr>
<tr>
<td></td>
<td>Appendix</td>
<td>487</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>489</td>
</tr>
<tr>
<td></td>
<td>Index</td>
<td>492</td>
</tr>
</tbody>
</table>