Contents

1 INTRODUCTION

1.1 Dimensional Analysis, 1
1.2 Expansions, 10
1.3 Gauge Functions, 12
1.4 Order Symbols, 17
1.5 Asymptotic Series, 18
1.6 Asymptotic Expansions and Sequences, 22
1.7 Convergent Versus Asymptotic Series, 23
1.8 Elementary Operations on Asymptotic Expansions, 24
 Exercises, 24

2 ALGEBRAIC EQUATIONS

2.1 Quadratic Equations, 28
2.2 Cubic Equations, 39
2.3 Higher-Order Equations, 43
2.4 Transcendental Equations, 45
 Exercises, 48

3 INTEGRALS

3.1 Expansion of Integrands, 52
3.2 Integration by Parts, 56
3.3 Laplace's Method, 65
3.4 The Method of Stationary Phase, 79
CONTENTS

3.5 The Method of Steepest Descent, 88
 Exercises, 101

4 THE DUFFING EQUATION
 4.1 The Straightforward Expansion, 109
 4.2 Exact Solution, 113
 4.3 The Lindstedt-Poincaré Technique, 118
 4.4 The Method of Renormalization, 121
 4.5 The Method of Multiple Scales, 122
 4.6 Variation of Parameters, 127
 4.7 The Method of Averaging, 129
 Exercises, 131

5 THE LINEAR DAMPED OSCILLATOR
 5.1 The Straightforward Expansion, 135
 5.2 Exact Solution, 136
 5.3 The Lindstedt-Poincaré Technique, 139
 5.4 The Method of Multiple Scales, 142
 5.5 The Method of Averaging, 144
 Exercises, 146

6 SELF-EXCITED OSCILLATORS
 6.1 The Straightforward Expansion, 148
 6.2 The Method of Renormalization, 151
 6.3 The Method of Multiple Scales, 152
 6.4 The Method of Averaging, 155
 Exercises, 157

7 SYSTEMS WITH QUADRATIC AND CUBIC NONLINEARITIES
 7.1 The Straightforward Expansion, 160
7.2 The Method of Renormalization, 162
7.3 The Lindstedt-Poincaré Technique, 164
7.4 The Method of Multiple Scales, 166
7.5 The Method of Averaging, 168
7.6 The Generalized Method of Averaging, 169
7.7 The Krylov-Bogoliubov-Mitropolsky Technique, 173
Exercises, 175

8 GENERAL WEAKLY NONLINEAR SYSTEMS 177
8.1 The Straightforward Expansion, 177
8.2 The Method of Renormalization, 179
8.3 The Method of Multiple Scales, 181
8.4 The Method of Averaging, 182
8.5 Applications, 184
Exercises, 188

9 FORCED OSCILLATIONS OF THE DUFFING EQUATION 190
9.1 The Straightforward Expansion, 191
9.2 The Method of Multiple Scales, 193
 9.2.1 Secondary Resonances, 193
 9.2.2 Primary Resonance, 205
9.3 The Method of Averaging, 209
 9.3.1 Secondary Resonances, 209
 9.3.2 Primary Resonance, 212
Exercises, 213

10 MULTIFREQUENCY EXCITATIONS 216
10.1 The Straightforward Expansion, 216
10.2 The Method of Multiple Scales, 219
 10.2.1 The Case $\omega_2 + \omega_1 \approx 1$, 220
10.2.2 The Case $\omega_2 - \omega_1 \approx 1$ and $\omega_1 \approx 2$, 222

10.3 The Method of Averaging, 226

10.3.1 The Case $\omega_1 + \omega_2 \approx 1$, 230

10.3.2 The Case $\omega_2 - \omega_1 \approx 1$ and $\omega_1 \approx 2$, 230

Exercises, 230

11 THE MATHIEU EQUATION

11.1 The Straightforward Expansion, 235

11.2 The Floquet Theory, 236

11.3 The Method of Strained Parameters, 243

11.4 Whittaker's Method, 247

11.5 The Method of Multiple Scales, 249

11.6 The Method of Averaging, 253

Exercises, 254

12 BOUNDARY-LAYER PROBLEMS

12.1 A Simple Example, 257

12.2 The Method of Multiple Scales, 268

12.3 The Method of Matched Asymptotic Expansions, 270

12.4 Higher Approximations, 279

12.5 Equations with Variable Coefficients, 284

12.6 Problems with Two Boundary Layers, 296

12.7 Multiple Decks, 304

12.8 Nonlinear Problems, 307

Exercises, 320

13 LINEAR EQUATIONS WITH VARIABLE COEFFICIENTS

13.1 First-Order Scalar Equations, 326

13.2 Second-Order Equations, 329

13.3 Solutions Near Regular Singular Points, 331
13.4 Singularity at Infinity, 342
13.5 Solutions Near an Irregular Singular Point, 344
 Exercises, 355

14 DIFFERENTIAL EQUATIONS WITH A LARGE PARAMETER 360

 14.1 The WKB Approximation, 361
 14.2 The Liouville-Green Transformation, 364
 14.3 Eigenvalue Problems, 366
 14.4 Equations with Slowly Varying Coefficients, 369
 14.5 Turning-Point Problems, 370
 14.6 The Langer Transformation, 375
 14.7 Eigenvalue Problems with Turning Points, 379
 Exercises, 383

15 SOLVABILITY CONDITIONS 388

 15.1 Algebraic Equations, 389
 15.2 Nonlinear Vibrations of Two-Degree-of-Freedom
 Gyroscopic Systems, 394
 15.3 Parametrically Excited Gyroscopic Systems, 397
 15.4 Second-Order Differential Systems, 401
 15.5 General Boundary Conditions, 406
 15.6 A Simple Eigenvalue Problem, 412
 15.7 A Degenerate Eigenvalue Problem, 414
 15.8 Acoustic Waves in a Duct with Sinusoidal Walls, 418
 15.9 Vibrations of Nearly Circular Membranes, 426
 15.10 A Fourth-Order Differential System, 432
 15.11 General Fourth-Order Differential Systems, 438
 15.12 A Fourth-Order Eigenvalue Problem, 441
 15.13 A Differential System of Equations, 445
 15.14 General Differential Systems of First-Order Equations, 447
 15.15 Differential Systems with Interfacial Boundary Conditions, 452
xiv CONTENTS

15.16 Integral Equations, 454
15.17 Partial-Differential Equations, 458
 Exercises, 462

APPENDIX A TRIGONOMETRIC IDENTITIES 472

APPENDIX B LINEAR ORDINARY-DIFFERENTIAL EQUATIONS 480

BIBLIOGRAPHY 501

INDEX 507