Phillip A. Griffiths

Exterior Differential Systems
and the Calculus of Variations

1983
Birkhäuser
Boston • Basel • Stuttgart
TABLE OF CONTENTS

INTRODUCTION

1

0. PRELIMINARIES

15

a) Notations from Manifold Theory
b) The Language of Jet Manifolds
c) Frame Manifolds
d) Differential Ideals
e) Exterior Differential Systems

I. EULER-LAGRANGE EQUATIONS FOR DIFFERENTIAL SYSTEMS WITH ONE INDEPENDENT VARIABLE

32

a) Setting up the Problem; Classical Examples
b) Variational Equations for Integral Manifolds of Differential Systems
c) Differential Systems in Good Form; the Derived Flag, Cauchy Characteristics, and Prolongation of Exterior Differential Systems
d) Derivation of the Euler-Lagrange Equations; Examples
e) The Euler-Lagrange Differential System; Non-Degenerate Variational Problems; Examples

II. FIRST INTEGRALS OF THE EULER-LAGRANGE SYSTEM; NOETHER'S THEOREM AND EXAMPLES

107

a) First Integrals and Noether's Theorem; Some Classical Examples; Variational Problems Algebraically Integrable by Quadratures
b) Investigation of the Euler-Lagrange System for Some Differential-Geometric Variational Problems:
 i) $\int \kappa^2 \, ds$ for Plane Curves; ii) Affine Arclength; iii) $\int \kappa^2 \, ds$ for Space Curves; and iv) Delauney Problem.

III. EULER EQUATIONS FOR VARIATIONAL PROBLEMS IN HOMOGENEOUS SPACES

161

a) Derivation of the Equations: i) Motivation; ii) Review of the Classical Case; iii) the General Euler Equations
b) Examples: i) the Euler Equations Associated to $\int \kappa^2/2 \, ds$ for Curves in \mathbb{R}^n; ii) Some Problems as in i) but for Curves in S^n; iii) Euler Equations Associated to Non-degenerate Ruled Surfaces
IV. ENDPOINT CONDITIONS; JACOBI EQUATIONS AND THE 2nd VARIATION; CONJUGATE POINTS; FIELDS AND THE HAMILTON-JACOBI EQUATION; THE LAGRANGE PROBLEM

a) Endpoint Conditions; Well-Posed Variational Problems; Examples
b) Jacobi Vector Fields and Conjugate Points; Examples
c) Geometry of the Reduced Momentum Space; the 2nd Variation; the Index Form and Sufficient Conditions for a Local Minimum
d) Fields and the Hamilton-Jacobi Equation; Further Sufficient Conditions for a Local Minimum
e) Mixed Endpoint Conditions and the Classical Problem of Lagrange; i) Well-Posed Mixed Variational Problems; ii) The Lagrange Problem; iii) The Classical Approach to the Lagrange Problem; iv) Some Related Examples

APPENDIX: MISCELLANEOUS REMARKS AND EXAMPLES

a) Problems with Integral Constraints; Examples
b) Classical Problems Expressed in Moving Frames

INDEX

BIBLIOGRAPHY