MOLECULAR VIBRATIONAL-ROTATIONAL SPECTRA

Theory and Applications of High Resolution Infrared, Microwave and Raman Spectroscopy of Polyatomic Molecules

by

D. PAPOUŠEK

J. Heyrovský Institute of Physical Chemistry and Electrochemistry, Czechoslovak Academy of Sciences, Prague, Czechoslovakia

M. R. ALIEV

Institute of Spectroscopy, Academy of Sciences of the U.S.S.R., Moscow, U.S.S.R.
II. SYMMETRY CLASSIFICATION OF MOLECULAR ENERGY LEVELS, SELECTION RULES 74

7. Molecular Symmetry 74

7.1. Permutation-inversion groups. 7.2. Point groups. 7.3. Relation between point groups and permutation-inversion groups. 7.4. Symmetry classification of energy levels.

8. Symmetry of Normal Vibrations 84

8.1. Representation of a symmetry group in the basis of vibrational coordinates. 8.2. Symmetry coordinates. 8.3. Factorization of the secular equation of molecular vibrations.

9. Symmetry Classification of the Eigenstates of Symmetric Top Molecules 90

10. Symmetry Classification of the Eigenstates of Linear Molecules 102

10.1. Extended permutation-inversion groups of linear molecules. 10.2. Classification of the rovibronic states of rigid linear molecules. 10.3. Selection rules for rovibronic transitions.

11. Symmetry Classification of the Eigenstates of Spherical Top Molecules 107

11.1. Symmetry group for methane. 11.2. Classification of the rotational levels in the three-dimensional rotation group and in the T_d group. 11.3. Classification of the vibronic states in the T_d group. 11.4. Coupling of the vibrational and rotational wavefunctions. 11.5. Selection rules for rovibronic transitions.

12. Symmetry Classification of the Eigenstates of Asymmetric Top Molecules 119

14. Statistical Weights of Molecular Energy Levels 132

III. VIBRATIONAL-ROTATIONAL INTERACTIONS IN SEMIRIGID MOLECULES 136

15. Expansion of the Vibrational-Rotational Hamiltonian. The Method of Contact Transformations 136

15.1. Expansion of the tensor u. 15.2. Expansion of the vibrational-rotational Hamiltonian. 15.3. Orders of magnitude of various vibrational-rotational terms and the problem of convergence. 15.4. General symmetry requirements for the vibrational-rotational Hamiltonian. 15.5. Contact transformations of the vibrational-rotational Hamiltonian. 15.6. Rotational commutators. 15.7. Determination of transformation functions.
16. General Form of the Vibrational-Rotational Interaction Terms

17. Vibrational-Rotational Energy of Asymmetric Top Molecules

18. Vibrational-Rotational Energy of Symmetric Top Molecules

19. Vibrational-Rotational Energy of Linear Molecules

20. Vibrational-Rotational Energy Levels of Spherical Top Molecules

20.1. Irreducible tensor form of the vibrational-rotational operators. 20.2. Vibrational energy levels of spherical top molecules. 20.3. Rotational energy levels of spherical top molecules in the ground vibrational state. 20.4. Rotational energy levels in the first excited state of triply degenerate vibrations. 20.5. Rotational structure of the first excited level of the doubly degenerate vibration.

21. Forbidden Transitions

22. Coriolis Interaction and Centrifugal Distortion Constants

22.1. ζ-matrices in the GF matrix formulation. 22.2. ζ-sum rules. 22.3. The GF matrix formalism for the calculation of the quartic centrifugal distortion constants. 22.4. Isotopic relations between the θ constants. 22.5. Relations between the θ and ζ constants. 22.6. Upper and lower bounds of the quartic centrifugal distortion constants.

23. Anharmonic Force Constants of Polyatomic Molecules

23.1. Nonlinear coordinate transformations. 23.2. Transformation of the potential energy function into normal coordinates. 23.3. Calculation of the L coefficients.

24. Molecular Structure

IV. NONRIGID MOLECULES

25. Molecular Inversion

26. Internal Rotation

APPENDICES

Appendix A Euler Angles

Appendix B Sum Rules for the Vibrational-Rotational Interaction Parameters, Commutation Relations for the Angular Momentum Operators

Appendix C Adiabatic Approximations in the Treatment of Electronic, Vibrational and Rotational States of Polyatomic Molecules

C.1. Schrödinger equation for molecular systems.

Appendix D Electronic Effects on the Moments of Inertia

D.1. Effective rotational Hamiltonian in the perturbed electronic state. D.2. Relation of electronic effects to the molecular g factor.

Appendix E Matrix Elements of the Vibrational and Rotational Operators

Appendix F Representations of Finite Groups and Rotation Group

Appendix G Coupling of Angular Momenta and Irreducible Tensors

irreducible tensor operators between rotational states of molecules. G.7. 3-j symbols adapted to cubic symmetry.

Appendix H Tables of Characters of the Irreducible Representations of Some Point Groups 307

Appendix I Symmetry Relations Between Molecular Parameters 309
I.1. General symmetry principles. I.2. Symmetry relations between the nonvanishing \(\zeta \)-constants

Appendix J Line Strengths for Infrared Transitions 312

SUBJECT INDEX .. 315