CONTENTS

Introduction

1 Operator Semigroups
 1 Definitions and Basic Properties, 6
 2 The Hille–Yosida Theorem, 10
 3 Cores, 16
 4 Multivalued Operators, 20
 5 Semigroups on Function Spaces, 22
 6 Approximation Theorems, 28
 7 Perturbation Theorems, 37
 8 Problems, 42
 9 Notes, 47

2 Stochastic Processes and Martingales
 1 Stochastic Processes, 49
 2 Martingales, 55
 3 Local Martingales, 64
 4 The Projection Theorem, 71
 5 The Doob–Meyer Decomposition, 74
 6 Square Integrable Martingales, 78
 7 Semigroups of Conditioned Shifts, 80
 8 Martingales Indexed by Directed Sets, 84
 9 Problems, 89
 10 Notes, 93
3 Convergence of Probability Measures

1. The Prohorov Metric, 96
2. Prohorov's Theorem, 103
3. Weak Convergence, 107
4. Separating and Convergence Determining Sets, 111
5. The Space $D_0[0, \infty)$, 116
6. The Compact Sets of $D_0[0, \infty)$, 122
7. Convergence in Distribution in $D_0[0, \infty)$, 127
8. Criteria for Relative Compactness in $D_0[0, \infty)$, 132
9. Further Criteria for Relative Compactness in $D_0[0, \infty)$, 141
10. Convergence to a Process in $C_0[0, \infty)$, 147
11. Problems, 150
12. Notes, 154

4 Generators and Markov Processes

1. Markov Processes and Transition Functions, 156
2. Markov Jump Processes and Feller Processes, 162
3. The Martingale Problem: Generalities and Sample Path Properties, 173
4. The Martingale Problem: Uniqueness, the Markov Property, and Duality, 182
5. The Martingale Problem: Existence, 196
6. The Martingale Problem: Localization, 216
7. The Martingale Problem: Generalizations, 221
8. Convergence Theorems, 225
9. Stationary Distributions, 238
10. Perturbation Results, 253
11. Problems, 261
12. Notes, 273

5 Stochastic Integral Equations

1. Brownian Motion, 275
2. Stochastic Integrals, 279
3. Stochastic Integral Equations, 290
4. Problems, 302
5. Notes, 305

6 Random Time Changes

1. One-Parameter Random Time Changes, 306
2. Multiparameter Random Time Changes, 311
3. Convergence, 321
4 Markov Processes in \mathbb{Z}^d, 329
5 Diffusion Processes, 328
6 Problems, 332
7 Notes, 335

7 Invariance Principles and Diffusion Approximations 337
1 The Martingale Central Limit Theorem, 338
2 Measures of Mixing, 345
3 Central Limit Theorems for Stationary Sequences, 350
4 Diffusion Approximations, 354
5 Strong Approximation Theorems, 356
6 Problems, 360
7 Notes, 364

8 Examples of Generators 365
1 Nondegenerate Diffusions, 366
2 Degenerate Diffusions, 371
3 Other Processes, 376
4 Problems, 382
5 Notes, 385

9 Branching Processes 386
1 Galton–Watson Processes, 386
2 Two-Type Markov Branching Processes, 392
3 Branching Processes in Random Environments, 396
4 Branching Markov Processes, 400
5 Problems, 407
6 Notes, 409

10 Genetic Models 410
1 The Wright–Fisher Model, 411
2 Applications of the Diffusion Approximation, 415
3 Genotypic-Frequency Models, 426
4 Infinitely-Many-Allele Models, 435
5 Problems, 448
6 Notes, 451

11 Density Dependent Population Processes 452
1 Examples, 452
2 Law of Large Numbers and Central Limit Theorem, 455
CONTENTS

3 Diffusion Approximations, 459
4 Hitting Distributions, 464
5 Problems, 466
6 Notes, 467

12 Random Evolutions 468

1 Introduction, 468
2 Driving Process in a Compact State Space, 472
3 Driving Process in a Noncompact State Space, 479
4 Non-Markovian Driving Process, 483
5 Problems, 491
6 Notes, 491

Appendixes 492

1 Convergence of Expectations, 492
2 Uniform Integrability, 493
3 Bounded Pointwise Convergence, 495
4 Monotone Class Theorems, 496
5 Gronwall's Inequality, 498
6 The Whitney Extension Theorem, 499
7 Approximation by Polynomials, 500
8 Bimeasures and Transition Functions, 502
9 Tulcea's Theorem, 504
10 Measurable Selections and Measurability of Inverses, 506
11 Analytic Sets, 506

References 508
Index 521
Flowchart 529