The Physics of Amorphous Solids

RICHARD ZALLEN
Xerox Webster Research Center
Webster, New York
now at Virginia Polytechnic Institute
Blacksburg, Virginia

A Wiley-Interscience Publication

John Wiley & Sons

New York • Chichester • Brisbane • Toronto • Singapore
CONTENTS

CHAPTER 1 The Formation of Amorphous Solids 1

1.1 Freezing into the Solid State: Glass Formation versus Crystallization 1
1.2 Preparation of Amorphous Solids 5
1.3 Structure, Solidity, and Respectability 10
1.4 The Glass Transition 16
1.5 Applications of Amorphous Solids 23

CHAPTER 2 Amorphous Morphology: The Geometry and Topology of Disorder 33

2.1 Introduction: Geometry, Chemistry, and the Primacy of Short-Range Order 33
2.2 Review of Crystalline Close Packing 35
2.3 Partial Characterizations of Structures 38
 2.3.1 Coordination Number 38
 2.3.2 Radial Distribution Function 40
 2.3.3 EXAFS 43
 2.3.4 Froth—The Honeycomb of Aggregated Atomic Cells 45
 2.3.5 Atomic Polyhedra versus Polyhedral Holes 47
2.4 Random Close Packing 49
 2.4.1 Empirical rcp Structure 49
 2.4.2 Theoretically Derived rcp 51
 2.4.3 Characterizations of the rcp Structure 54
 2.4.4 Peas in a Pot 56
 2.4.5 Dimensionality Considerations and the Extendability of Local Close Packing 58
2.5 Continuous Random Network 60
 2.5.1 The Simplicial Graph 60
 2.5.2 Mathematical Bonds and Chemical Bonds: The Covalent Graph 60
 2.5.3 The Continuous-Random-Network Model of Covalent Glasses 63
 2.5.4 Prototype Elemental crn: Amorphous Silicon 67
CONTENTS

2.5.5 Prototype Binary crn: Fused Silica 72
2.6 Experimental RDFs versus rcp and crn Models 73

CHAPTER 3 Chalcogenide Glasses and Organic Polymers 86

3.1 Molecular Solids and Network Dimensionality 86
3.2 One- and Two-Dimensional-Network Solids 90
3.3 Compositional Freedom in Chalcogenide Glasses and in Oxides 97
3.4 The 8 - n Rule and the "Ideal Glass" 101
3.5 Topological Defects and Valence Alternation 104
3.6 The Random Coil Model of Organic Glasses 107
3.7 Random Walks, Drunken Birds, and Configurations of Flexible Chains 113
3.8 SAWs, Mean Fields, and Swollen Coils in Solution 120
3.9 Why Overlapping Coils are "Ideal" 127
3.10 Scaling Exponents and Fractal Dimensions 129

CHAPTER 4 The Percolation Model 135

4.1 Introduction 135
4.2 An Example: The Vandalized Grid 136
4.3 The Percolation Path 139
4.4 Applications to Phase Transitions 146
4.5 Close to Threshold: Critical Exponents, Scaling, and Fractals 153
4.6 Trees, Gels, and Mean Fields 167
4.7 Continuum Percolation and the Critical Volume Fraction 183
4.8 Generalizations and Renormalizations 191

CHAPTER 5 Localization ↔ Delocalization Transitions 205

5.1 Localized-to-Extended Transitions in Amorphous Solids 205
5.2 Dynamic Modeling: Monte Carlo Simulations of the Glass Transition 206
5.3 The Free-Volume Model of the Glass Transition 212
5.4 Free Volume, Communal Entropy, and Percolation 218
5.5 Electron States and Metal ↔ Insulator Transitions 223
Table of Contents

5.6 Disorder-Induced Localization: The Anderson Transition
 231
5.7 Scaling Aspects of Localization
 242

CHAPTER 6 Optical and Electrical Properties
252

6.1 Local Order and Chemical Bonding
 252
6.2 Optical Properties
 260
6.3 Electrical Properties
 274
6.4 Native Defects and Useful Impurities
 289

Index
297
<table>
<thead>
<tr>
<th>CONTENTS</th>
</tr>
</thead>
</table>

CHAPTER 1 **The Formation of Amorphous Solids**
1.1 Freezing into the Solid State: Glass Formation versus Crystallization
1.2 Preparation of Amorphous Solids
1.3 Structure, Solidity, and Respectability
1.4 The Glass Transition
1.5 Applications of Amorphous Solids

CHAPTER 2 **Amorphous Morphology: The Geometry and Topology of Disorder**

2.1 Introduction: Geometry, Chemistry, and the Primacy of Short-Range Order
2.2 Review of Crystalline Close Packing
2.3 Partial Characterizations of Structures
2.3.1 Coordination Number
2.3.2 Radial Distribution Function
2.3.3 EXAFS
2.3.4 Froth—The Honeycomb of Aggregated Atomic Cells
2.3.5 Atomic Polyhedra versus Polyhedral Holes
2.4 Random Close Packing
2.4.1 Empirical rcp Structure
2.4.2 Theoretically Derived rcp
2.4.3 Characterizations of the rcp Structure
2.4.4 Peas in a Pot
2.4.5 Dimensionality Considerations and the Extendability of Local Close Packing
2.5 Continuous Random Network
2.5.1 The Simplicial Graph
2.5.2 Mathematical Bonds and Chemical Bonds: The Covalent Graph
2.5.3 The Continuous-Random-Network Model of Covalent Glasses
2.5.4 Prototype Elemental cm: Amorphous Silicon

ix
CONTENTS

2.5.5 Prototype Binary crn: Fused Silica 72
2.6 Experimental RDFs versus rcp and crn Models 73

CHAPTER 3 Chalcogenide Glasses and Organic Polymers 86
3.1 Molecular Solids and Network Dimensionality 86
3.2 One- and Two-Dimensional-Network Solids 90
3.3 Compositional Freedom in Chalcogenide Glasses and in Oxides 97
3.4 The $8 - n$ Rule and the "Ideal Glass" 101
3.5 Topological Defects and Valence Alternation 104
3.6 The Random Coil Model of Organic Glasses 107
3.7 Random Walks, Drunken Birds, and Configurations of Flexible Chains 113
3.8 SAWs, Mean Fields, and Swollen Coils in Solution 120
3.9 Why Overlapping Coils are "Ideal" 127
3.10 Scaling Exponents and Fractal Dimensions 129

CHAPTER 4 The Percolation Model 135
4.1 Introduction 135
4.2 An Example: The Vandalized Grid 136
4.3 The Percolation Path 139
4.4 Applications to Phase Transitions 146
4.5 Close to Threshold: Critical Exponents, Scaling, and Fractals 153
4.6 Trees, Gels, and Mean Fields 167
4.7 Continuum Percolation and the Critical Volume Fraction 183
4.8 Generalizations and Renormalizations 191

CHAPTER 5 Localization \leftrightarrow Delocalization Transitions 205
5.1 Localized-to-Extended Transitions in Amorphous Solids 205
5.2 Dynamic Modeling: Monte Carlo Simulations of the Glass Transition 206
5.3 The Free-Volume Model of the Glass Transition 212
5.4 Free Volume, Communal Entropy, and Percolation 218
5.5 Electron States and Metal \leftrightarrow Insulator Transitions 223
5.6 Disorder-Induced Localization: The Anderson Transition 231
5.7 Scaling Aspects of Localization 242

CHAPTER 6 Optical and Electrical Properties 252
6.1 Local Order and Chemical Bonding 252
6.2 Optical Properties 260
6.3 Electrical Properties 274
6.4 Native Defects and Useful Impurities 289

Index 297