The Physics of Phonons

G P Srivastava

Reader in Theoretical Semiconductor Physics

Department of Physics

University of Exeter

Adam Hilger

Bristol, Philadelphia and New York
Contents

Preface xi
Acknowledgments xv

1. **Elements of Crystal Symmetry** 1
 1.1 Direct lattice 1
 1.2 Reciprocal lattice 3
 1.3 Brillouin zone 5
 1.4 Crystal structure 6
 1.5 Point groups 9
 1.6 Space groups 10
 1.7 Symmetry of the Brillouin zone 11
 1.8 Jones zone 14
 1.9 Surface Brillouin zone 14
 1.10 Matrix representations of point groups 17
 1.11 Effect of space group operations on plane waves 18

2. **Lattice Dynamics in the Harmonic Approximation** 20
 Semiclassical Treatment 20
 2.1 Introduction 20
 2.2 Lattice dynamics of a linear chain 23
 2.3 Lattice dynamics of three-dimensional crystals —phenomenological models 29
 2.4 Density of normal modes 41
 2.5 Numerical calculation of $g(\omega)$ 44
 2.6 Lattice heat capacity 50
 2.7 Elastic waves in cubic crystals 54

3. **Lattice Dynamics in the Harmonic Approximation** 59
 Ab initio Treatment 59
 3.1 Introduction 59
 3.2 The frozen-phonon approach 61
 3.3 The linear response approach 75
 3.4 The planar force constant method 81
CONTENTS

8.6 Phonon interaction with a two-dimensional electron gas 278

9 Phonons in Impure and Mixed Crystals 286
 9.1 Introduction 286
 9.2 Localised vibrational modes in semiconductors 287
 9.3 Experimental studies of long-wavelength optical phonons in mixed crystals 294
 9.4 Theoretical models for long-wavelength optical phonons in mixed crystals 302
 9.5 Phonon conductivity of mixed crystals 309

10 Phonons in Quasi-crystalline and Amorphous Solids 318
 10.1 Introduction 318
 10.2 Phonons in quasi-crystals 318
 10.3 Structure and vibrational excitations of amorphous solids 324
 10.4 Vibrational properties of amorphous solids 330
 10.5 Low-temperature properties of amorphous solids 335

11 Phonon Spectroscopy 345
 11.1 Introduction 345
 11.2 Heat pulse technique 246
 11.3 Superconducting tunnel junction technique 348
 11.4 Optical techniques 350
 11.5 Phonons from Landau levels in 2DEG 351
 11.6 Phonon focusing and imaging 353
 11.7 Frequency crossing phonon spectroscopy 356
 11.8 Phonon echoes 358

12 Phonons in Liquid Helium 360
 12.1 Introduction 360
 12.2 Dispersion curve and elementary excitations 361
 12.3 Specific heat 362
 12.4 Interactions between the excitations 363
 12.5 Kapitza resistance 368
 12.6 Quantum evaporation 370

Appendices
 A Density functional formalism 375
 B The pseudopotential method 382
 C Evaluation of integrals in section 6.4.1.4 388
 D Negative-definiteness of the phonon off-diagonal operator Λ 389

References 390

Index 411