CONTENTS

Preface v

Chapter 1
The Theory of Coherent X-ray Scattering
1.1. Introduction 1
1.2. The scattering from one electron 2
1.3. The scattering from many electrons 3
1.4. Fourier transformation and reciprocal space 6
1.5. The Ewald sphere construction 7
1.6. The convolution operation 8
1.7. The Fourier transforms of convolutions and products of functions 12
1.8. General relations involving Fourier transforms 14
1.9. Diffraction by crystals 16
1.10. Powder patterns 23
1.11. Diffraction from non-crystalline substances 25
References 31

Chapter 2
Experimental Techniques
2.1. Properties of X-ray radiation 33
2.2. X-ray excitation 34
   2.2.1. White radiation 34
   2.2.2. Characteristic radiation 35
   2.2.3. Sealed tubes 37
   2.2.4. Rotating anode tubes 39
   2.2.5. Synchrotron radiation, 40
      2.2.5.1. Synchrotrons and storage rings 41
      2.2.5.2. Intensity, polarization, time structure 42
      2.2.5.3. Energy spectrum 44
      2.2.5.4. Applications in synthetic polymers 46
2.3. Absorption of X-ray radiation 47
   2.3.1. Absorption 47
   2.3.2. Photoelectric effect 48
   2.3.3. Scattering of X-rays 48
   2.3.4. Absorption edges 49
   2.3.5. Single and balanced filters 50
2.4. X-ray detection 51
   2.4.1. Photographic films 51
   2.4.2. Counters for X-ray detection 55
      2.4.2.1. Gas counters 56
      2.4.2.2. Scintillation counters 57
      2.4.2.3. Solid state detectors 58
Chapter 3

Lattice Constants

3.1. Introduction 89
3.2. Measurement of lattice constants by photographic methods 89
  3.2.1. Debye-Scherrer camera 91
3.3. Measurement of lattice constants from diffractometer line profiles 92
  3.3.1. Use of a flat specimen 94
  3.3.2. Transparency error 95
  3.3.3. Divergence of the primary beam 96
  3.3.4. Specimen displacement 97
  3.3.5. Calibration 98
3.4. Unit cell measurements in polymers 99
  3.4.1. Variations with temperature (thermal expansion) 99
  3.4.2. Effect of crystallization temperature 103
  3.4.3. Effect of lateral chain defects 106
  3.4.4. Effect of drawing 114
  3.4.5. Effect of high pressure 118
3.5. Interpretation of unit cell variations 119
  3.5.1. The incorporation of chain defects in polymer crystals 121
  3.5.2. Effect of lamellar thickness on lattice constants 124
References 127

Chapter 4

Line Breadth Measurements: Paracrystallinity

4.1. Introduction 129
4.2. Lattice distortions 130
4.3. Distortions of the first kind 132
4.4. The concept of paracrystal: distortions of the second kind 134
  4.4.1. The paracrystalline lattice factor 138
  4.4.2. Integral breadth 139
  4.4.3. Intensity function 140

References 141
4.5.  Line broadening analysis  
4.5.1.  Crystallite size  
4.5.2.  Lattice disorder  
4.5.3.  Separation of crystal size and lattice disorder broadening  
4.5.4.  Applications to synthetic polymers  
  4.5.4.1.  \(8\phi\)-versus-\(h\) plots  
  4.5.4.2.  Shape ellipsoid  
4.6.  \(\alpha^*\)-Relation: natural paracrystals  
4.6.1.  Bearing lattice planes  
4.6.2.  Origin of distortions of the 2nd kind in polymers  
4.7.  Fourier transform methods  
4.7.1.  The Warren-Averbach method  
4.7.2.  Alternative Fourier techniques  
4.7.3.  Truncation effect  
4.7.4.  Examples  
4.8.  Instrumental corrections  
4.8.1.  Fourier method  
4.8.2.  Reference methods  
References

Chapter 5

The X-ray Determination of the Crystallinity in Polymers

5.1.  Introduction  
5.2.  Methods based on external comparison  
  5.2.1.  The method of Goppel and Arlman  
  5.2.2.  The method of Wakelin, Virgin and Crystal  
  5.2.3  The method of Hermans and Weidinger  
  5.2.4.  The method of Hendus and Schnell  
5.3.  Methods based on internal comparison  
  5.3.1.  Theoretical  
  5.3.2.  Some older methods  
  5.3.3  Ruland's method  
    5.3.3.1.  Principles  
    5.3.3.2.  Computerization  
    5.3.3.3.  Practical aspects  
    5.3.3.4.  Anisotropic samples  
    5.3.3.5.  Incongruent phases  
    5.3.3.6.  General considerations  
References

Chapter 6

The X-ray Determination of the Orientation in Polymers

6.1.  Introduction  
6.2.  Classification  
6.3.  The X-ray registration of the orientation of crystallites  
6.4.  Pole figures  
6.5.  Specification of orientation  
  6.5.1.  Types of orientation
Chapter 7

The Small-angle X-ray Scattering of Polymers

7.1. Introduction 241
7.2. Primary data treatment 242
   7.2.1. Raw data correction 242
   7.2.2. Background subtraction 242
   7.2.3. Desmearing 244
   7.2.4. Calculation of the correlation function 247
   7.2.5. Calculation of absolute intensities 251
   7.2.6. Calculation of the invariant 254
7.3. Two-phase structures 255
   7.3.1. General 255
   7.3.2. Determination of the specific surface 257
   7.3.3. Determination of the width of the phase boundary 261
7.4. Particle scattering 266
7.5. Lamellar systems 270
   7.5.1. The ideal lamellar model: simple analysis 271
   7.5.2. The direct method 273
      7.5.2.1. Properties of the intensity function at the lowest angles 278
      7.5.2.2. Variations in lamellar thickness 280
      7.5.2.3. Further improvements of the model 281
   7.5.3. The correlation function approach 282
   7.5.4. Deviations from the ideal lamellar model 288
7.6. The small-angle scattering of oriented polymers 294
   7.6.1. Registration of two-dimensional X-ray patterns 294
   7.6.2. General description of SAXS fibre patterns 296
   7.6.3. Interpretation of fibre patterns in terms of models 298
      7.6.3.1. Models based on continuous lamellar structures 299
      7.6.3.2. Models based on microfibrils 300
7.6.4. References 304

References 307

Author Index 307

Subject Index 312