Fixed Point Theory
An Introduction
Table of Contents

Editor's Preface vii
Foreword xiii

CHAPTER 1. Topological Spaces and Topological Linear Spaces
1.1. Metric Spaces 1
1.2. Compactness in Metric Spaces. Measures of Noncompactness 5
1.3. Baire Category Theorem 11
1.4. Topological Spaces 12
1.5. Linear Topological Spaces. Locally Convex Spaces 19

CHAPTER 2. Hilbert spaces and Banach spaces
2.1. Normed Spaces. Banach Spaces 26
2.2. Hilbert Spaces 35
2.3. Convergence in X, X^* and $L(X)$ 43
2.4. The Adjoint of an Operator 45
2.5. Classes of Banach Spaces 46
2.6. Measures of Noncompactness in Banach Spaces 63
2.7. Classes of Special Operators on Banach Spaces 65

CHAPTER 3. The Contraction Principle
3.0. Introduction 72
3.1. The Principle of Contraction Mapping in Complete Metric Spaces 74
3.2. Linear Operators and Contraction Mappings 78
3.3. Some Generalizations of the Contraction Mappings 79
3.4. Hilbert's Projective Metric and Mappings of Contractive Type 92
3.5. Approximate Iteration 100
3.6. A Converse of the Contraction Principle 103
3.7. Some Applications of the Contraction Principle 109
CHAPTER 4. *Brouwer's Fixed Point Theorem*

4.0. Introduction 113
4.1. The Fixed Point Property 113
4.2. Brouwer's Fixed Point theorem. Equivalent Formulations 116
4.3. Robbins' Complements of Brouwer's Theorem 125
4.4. The Borsuk–Ulam Theorem 126
4.5. An Elementary Proof of Brouwer’s Theorem 132
4.6. Some Examples 139
4.7. Some Applications of Brouwer’s Fixed Point Theorem 140
4.8. The Computation of Fixed Points. Scarf’s Theorem 143

CHAPTER 5. *Schauder’s Fixed Point Theorem and Some Generalizations*

5.0. Introduction 152
5.1. The Schauder Fixed Point Theorem 154
5.2. Darbo’s Generalization of Schauder’s Fixed Point Theorem 159
5.3. Krasnoselskii’s, Rothe’s and Altman’s Theorems 165
5.4. Browder’s and Fan’s Generalizations of Schauder's and Tychonoff's Fixed Point Theorem 168
5.5. Some Applications 177

CHAPTER 6. *Fixed Point Theorems for Nonexpansive Mappings and Related Classes of Mappings*

6.0. Introduction 182
6.1. Nonexpansive Mappings 183
6.2. The Extension of Nonexpansive Mappings 185
6.3. Some General Properties of Nonexpansive Mappings 194
6.4. Nonexpansive Mappings on Some Classes of Banach Spaces 195
6.5. Convergence of Iterations of Nonexpansive Mappings 219
6.6. Classes of Mappings Related to Nonexpansive Mappings 224
6.7. Computation of Fixed Points for Classes of Nonexpansive Mappings 230
6.8. A Simple Example of a Nonexpansive Mapping on a Rotund Space Without Fixed Points 231
CHAPTER 7. Sequences of Mappings and Fixed Points 233

7.0. Introduction 233
7.1. Convergence of Fixed Points for Contractions or Related Mappings 233
7.2. Sequences of Mappings and Measures of Noncompactness 242

CHAPTER 8. Duality Mappings and Monotone Operators 245

8.0. Introduction 245
8.1. Duality Mappings 246
8.2. Monotone Mappings and Classes of Nonexpansive Mappings 254
8.3. Some Surjectivity Theorems on Real Banach Spaces 257
8.4. Some Surjectivity Theorems in Complex Banach Spaces 265
8.5. Some Surjectivity Theorems in Locally Convex Spaces 266
8.6. Duality Mappings and Monotonicity for Set-Valued Mappings 271
8.7. Some Applications 272

CHAPTER 9. Families of Mappings and Fixed Points 276

9.0. Introduction 276
9.1. Markov's and Kakutani's Results 276
9.2. The Ryll–Nardzewski Fixed Point Theorem 283
9.3. Fixed Points for Families of Nonexpansive Mappings 287
9.4. Invariant Means on Semigroups and Fixed Point for Families of Mappings 292

CHAPTER 10. Fixed Points and Set-Valued Mappings 295

10.0 Introduction 295
10.1 The Pompeiu–Hausdorff Metric 296
10.2. Continuity for Set-Valued Mappings 299
10.3. Fixed Point Theorems for Some Classes of Set-valued Mappings 301
10.4. Set-Valued Contraction Mappings 313
10.5. Sequences of Set-Valued Mappings and Fixed Points 322
Table of Contents

CHAPTER 11. Fixed Point Theorems for Mappings on PM-Spaces

11.0. Introduction .. 325
11.1. PM-Spaces ... 325
11.2. Contraction Mappings in PM-Spaces 328
11.3. Probabilistic Measures of Noncompactness 337
11.4. Sequences of Mappings and Fixed Points 341

CHAPTER 12. The Topological Degree

12.0. Introduction .. 344
12.1. The Topological Degree in Finite-Dimensional Spaces 345
12.2. The Leray–Schauder Topological Degree 360
12.3. Leray’s Example 370
12.4. The Topological Degree for k-Set Contractions 372
12.5. The Uniqueness Problem for the Topological Degree 375
12.6. The Computation of the Topological Degree 388
12.7. Some Applications of the Topological Degree 413

BIBLIOGRAPHY
INDEX ... 419
459