FERROMAGNETIC RESONANCE

THE PHENOMENON OF RESONANT ABSORPTION OF A HIGH-FREQUENCY MAGNETIC FIELD IN FERROMAGNETIC SUBSTANCES

EDITED BY

S.V. VONSOVSKII
Corresponding Member of the U.S.S.R. Academy of Sciences

TRANSLATED BY

H. S. H. MASSEY

TRANSLATION EDITED BY

D. TER HAAR

PERGAMON PRESS
OXFORD · LONDON · EDINBURGH · NEW YORK
TORONTO · PARIS · FRANKFURT
CONTENTS

EDITOR’S FOREWORD ix

CHAPTER I. MAGNETIC RESONANCE IN FERROMAGNETICS (S. V. VONSOVSKII) 1

CHAPTER II. PHENOMENOLOGICAL THEORY OF FERROMAGNETIC RESONANCE (G. V. SKROTSKII, L. V. KURBATOV) 12

1. Introduction 12
2. Equation of Motion for the Magnetization of a System of Weakly Interacting Magnetic Electron Moments 15
3. Effective Internal Field in a Ferromagnetic. General Formula for the Resonance Frequency 19
4. The Effect of Shape on the Resonance Frequency 24
5. The Effect of Crystal Magnetic Anisotropy on the Resonance Frequency 30
6. The Effect of Domain Structure on the Resonance Frequency 44
7. The Effect of Sub-lattice Structure of Ferromagnetic Semi-conductors on the Resonance Frequency 49
8. Phenomenological Approach to Damping in the Equation of Motion for the Magnetization of a Ferromagnetic 54
9. Thermodynamic Theory of Resonance Phenomena in Ferromagnetics 59
10. Line Width of Resonance Absorption 66
11. Solution of Equations of Motion in the Case of Weak Radio-Frequency Fields. Dynamic Permeability Tensor 70
12. Dispersion Relations in the Theory of Ferromagnetic Resonance 73

CHAPTER III. MAGNETIC RESONANCE IN FERROMAGNETICS AND ANTI-FERROMAGNETICS AS EXCITATION OF SPIN WAVES (E. A. TUROV) 78

1. Spin Waves or Magnons 79
2. Excitation of Ferromagnons by a High-frequency Electromagnetic Field 85
3. General Phenomenological Theory of Spin Waves in Ferromagnetics and Antiferromagnetics 90
4. Spin Waves in a Ferromagnetic including Anisotropy and Demagnetizing Fields 100
5. Spin Waves in an Antiferromagnetic 105
6. Spin Waves and Magnetic Resonance in Ferrimagnetics 115
7. Weak Ferromagnetism 119

CHAPTER IV. RELAXATION PROCESSES IN FERROMAGNETIC DIELECTRICS (M. I. KAGANOV) 127
CHAPTER V. FEATURES OF FERROMAGNETIC RESONANCE IN METALS
(E. A. TUROV) 144

A. Influence of Skin Effect and Exchange Interaction on Ferromagnetic
Resonance in Metals 144
1. Qualitative Examination 144
2. Initial Equations 148
3. Equivalent Permeability when a Specimen of Ferromagnetic
Material is magnetized Parallel to its Surface 149
4. Discussion of Results and Comparison with Experiment 153
5. Equivalent Permeability when a Ferromagnetic Specimen is mag­
etized at Right Angles to its Surface 159

B. Influence of Conduction Electrons on Ferromagnetic Resonance 160
6. Energy of Interaction of a Ferromagnetic's Magnetization with
Conduction Electrons 160
7. Spin–Electron Relaxation and Line Width 164
8. Resonance Frequencies in a Ferromagnetic Metal 173
9. Final Remarks 182

CHAPTER VI. LINE WIDTH OF FERROMAGNETIC RESONANCE ABSORPTION
(E. A. TUROV) 184

A. Basic Experimental Data 184
1. Reasons for Line Width in Real Ferromagnetic Crystals 185
2. Line Width as a Function of Temperature in Single Crystals 188
3. Other Factors affecting Line Width 201

B. Survey of Theoretical Ideas on the Nature of the Line Width 202
4. Spin–Spin Relaxation 203
5. Line Width in Metals 205
6. Inhomogeneities in Magnetic Structure 208
7. Line Width in Rare-earth Iron Garnets 222
8. Iron Ions of Different Valencies in Octahedral Sites of Ferrospinel 228
9. Conclusions 229

CHAPTER VII. NON-UNIFORM RESONANCE AND SPIN WAVES (V. G. Bar’-
yakhtar, M. I. KAGANOV) 231

CHAPTER VIII. NON-LINEAR PROCESSES IN FERRITES IN U.H.F. FIELDS
(A. G. GUREVICH) 248

1. Introduction 248
2. Solution of the Landau–Lifshitz Equation by the Method of Successive Approximations 250
3. "Law of Conservation" of the Degree of Magnetization 252
4. Detection 253
5. Frequency Doubling 256
6. Frequency Conversion in the Case of Two Transverse Alternating Fields 258
CONTENTS

7. Frequency Conversion in the Case of Longitudinal and Transverse Alternating Fields 264
8. Ferrite Oscillator and Amplifier 266

CHAPTER IX. EIGEN OSCILLATIONS AND NON-LINEAR PHENOMENA IN A FERRITE (YA. A. MONOSOV, A. V. VASHKOVSKII) 279
1. Introduction 279
2. Non-uniform Modes of Precession in a Ferrite 281
 (1) Basic Results of the Theory 281
 (2) Methods of recognizing Resonance Lines 284
 (3) Results of Experimental Study 286
3. Non-linear Phenomena in a Ferrite 293
 (1) Basic Results of the Theory 293
 (2) Results of Experimental Investigations 296
4. Conclusion 301

REFERENCES 304
AUTHOR INDEX 315
SUBJECT INDEX 320
OTHER TITLES IN THE SERIES 326