CONTENTS

1 RANK TESTS FOR COMPARING TWO TREATMENTS
 1. Ranks in the comparison of two treatments, 1
 2. The Wilcoxon rank-sum test, 5
 3. Asymptotic null distribution of the Wilcoxon statistic, 13
 4. The treatment of ties, 18
 5. Two-sided alternatives, 23
 6. The Siegel-Tukey and Smirnov tests, 32
 7. Further developments, 40
 Other approximations to the distribution of \(W_s \);
 Censored observations; Early termination; Power;
 Permutation tests.
 8. Problems, 43
 9. References, 52

2 COMPARING TWO TREATMENTS OR ATTRIBUTES IN A
 POPULATION MODEL
 1. Population models, 55
 2. Power of the Wilcoxon rank-sum test, 65
 3. Asymptotic power, 69
 4. Comparison with Student's \(t \)-test, 76
 5. Estimating the treatment effect, 81
 6. Confidence procedures, 91
 7. Further developments, 95
 The Behrens-Fisher problem; The Normal Scores test;
 Increasing the number of levels to improve sensitivity; Small-
 sample power; Large-sample power and efficiency; Efficiency
 in the presence of ties; Optimality properties; Additional
 properties of \(\hat{\Delta} \); Efficiency of the Siegel-Tukey test; The scale
 tests of Capon and Klotz; The Savage (or exponential scores)
 test; Scale tests with unknown location; Power and efficiency
 of the Smirnov test; Sequential rank tests; The permutation
 \(t \)-test.
 8. Problems, 106
 9. References, 114
3 BLOCKED COMPARISONS FOR TWO TREATMENTS 120
1. The sign test for paired comparisons, 120
2. The Wilcoxon signed-rank test, 123
3. Combining data from several experiments or blocks, 132
4. A balanced design for paired comparisons, 141
5. Further developments, 143
 Power of the sign and Wilcoxon tests; Alternative treatment of zeros; Tests against omnibus alternatives; Efficiency and generalizations of the blocked comparisons test W_s.
6. Problems, 146
7. References, 153

4 PAIRED COMPARISONS IN A POPULATION MODEL AND THE ONE-SAMPLE PROBLEM 156
1. Power and uses of the sign test, 156
2. Power of the signed-rank Wilcoxon test, 164
3. Comparison of sign, Wilcoxon, and t-tests, 171
4. Estimation of a location parameter or treatment effect, 175
5. Confidence procedures, 181
6. Further developments, 185
 Power and efficiency of the sign test; The absolute Normal Scores test; Power and efficiency of the Wilcoxon and absolute Normal Scores test; Tests of symmetry; A generalized set of confidence points; Bounded-length sequential confidence intervals for θ; Robust estimation; Some optimum properties of tests and estimators; Departures from assumption.
7. Problems, 191
8. References, 199

5 THE COMPARISON OF MORE THAN TWO TREATMENTS 202
1. Ranks in the comparison of several treatments, 202
2. The Kruskal-Wallis test, 204
3. $2 \times r$ Contingency tables, 210
4. Population models, 219
5. One-sided procedures, 226
 Comparing several treatments with a control; Testing equality against ordered alternatives.
6. Selection and ranking procedures, 238
 Ranking several treatments; Selecting the best of several treatments.
7. Further developments, 247
 Power and efficiency; Estimation of several differences in location; The estimation of contrasts; Normal Scores and Smirnov tests for the s-sample problem.
8. Problems, 250
9. References, 257

6 RANDOMIZED COMPLETE BLOCKS
 1. Ranks in randomized complete blocks, 260
 2. The tests of Friedman, Cochran, and McNemar, 262
 3. Aligned ranks, 270
 4. Population models and efficiency, 273
 5. Further developments, 279
 More general blocks; One-sided tests and ranking procedures;
 Estimation of treatment differences and other contrasts;
 Combination of independent tests.
 6. Problems, 281
 7. References, 285

7 TESTS OF RANDOMNESS AND INDEPENDENCE
 1. The hypothesis of randomness, 287
 2. Testing against trend, 290
 3. Testing for independence, 297
 4. $s \times t$ Contingency tables, 303
 5. Further developments, 311
 Pitman efficiency of D; Estimating the regression coefficient β;
 Tests of randomness based on runs; Other tests of
 independence; Power and efficiency of tests of independence;
 Contingency tables.
 6. Problems, 317
 7. References, 322

APPENDIX
 1. Expectation and variance formulas, 327
 2. Some standard distributions, 339
 The binomial distribution; The hypergeometric distribution;
 The normal distribution; The Cauchy, logistic, and
 double-exponential distributions; The rectangular (uniform)
 and exponential distributions; The χ^2-distribution; Order
 statistics.
 3. Convergence in probability and in law, 345
 4. Sampling from a finite population, 352
 5. U-statistics, 362
 6. Pitman efficiency, 371
 7. Some multivariate distributions, 380
 The multinomial distribution; The multiple hypergeometric
 distribution; The multivariate normal distribution.
8. Convergence of random vectors, 386
9. Problems, 396
10. References, 405

TABLES

A Number of combinations \(\binom{N}{n} \), 407
B Wilcoxon rank-sum distribution, 408
C Area under the normal curve, 411
D Square roots, 412
E Smirnov exact upper-tail probabilities, 413
F Smirnov limiting distribution, 415
G Distribution of sign-test statistic, 416
H Wilcoxon signed-rank distribution, 418
I Kruskal-Wallis upper-tail probabilities, 422
J(a) \(\chi^2 \) upper-tail probabilities for \(v = 2, 3, 4, 5 \) degrees of freedom, 427
J(b) Critical values \(c \) of \(\chi^2 \) with \(v = 6(1)40(5)100 \) degrees of freedom, 428
K Upper-tail probabilities of Jonckheere’s statistic, 429
L Amalgamation probabilities for Chacko’s test, 430
M Upper-tail probabilities of Friedman’s statistic, 431
N Distribution of Spearman’s statistic, 433

ACKNOWLEDGMENTS FOR TABLES, 434
ANSWERS TO SELECTED PROBLEMS, 435
DATA GUIDE (TITLES FOR DATA PRESENTED IN THE TEXT), 445
AUTHOR INDEX, 447
SUBJECT INDEX, 451