OPTIMIZATION BY VECTOR SPACE METHODS

David G. Luenberger
Stanford University,
Stanford, California
CONTENTS

5.8 Minimum Norm Problems 118
5.9 Applications 122
*5.10 Weak Convergence 126

GEOMETRIC FORM OF THE HAHN-BANACH THEOREM 129
5.11 Hyperplanes and Linear Functionals 129
5.12 Hyperplanes and Convex Sets 131
*5.13 Duality in Minimum Norm Problems 134
5.14 Problems 137
References 142

6 LINEAR OPERATORS AND ADJOINTS 143

6.1 Introduction 143
6.2 Fundamentals 143

INVERSE OPERATORS 147
6.3 Linearity of Inverses 147
6.4 The Banach Inverse Theorem 148

ADJOINTS 150
6.5 Definition and Examples 150
6.6 Relations between Range and Nullspace 155
6.7 Duality Relations for Convex Cones 157
*6.8 Geometric Interpretation of Adjoints 159

OPTIMIZATION IN HILBERT SPACE 160
6.9 The Normal Equations 160
6.10 The Dual Problem 161
6.11 Pseudoinverse Operators 163
6.12 Problems 165
References 168

7 OPTIMIZATION OF FUNCTIONALS 169

7.1 Introduction 169

LOCAL THEORY 171
7.2 Gateaux and Fréchet Differentials 171
7.3 Fréchet Derivatives 175
7.4 Extrema 177
*7.5 Euler-Lagrange Equations 179
*7.6 Problems with Variable End Points 183
7.7 Problems with Constraints 185