Contents

Chapter 1. Introduction

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1</td>
<td>What Is Experimental Design?</td>
<td>1</td>
</tr>
<tr>
<td>1-2</td>
<td>Applications of Experimental Design</td>
<td>3</td>
</tr>
<tr>
<td>1-3</td>
<td>Basic Principles</td>
<td>8</td>
</tr>
<tr>
<td>1-4</td>
<td>Guidelines for Designing Experiments</td>
<td>9</td>
</tr>
<tr>
<td>1-5</td>
<td>Historical Perspective</td>
<td>12</td>
</tr>
<tr>
<td>1-6</td>
<td>Using Statistical Techniques in Experimentation</td>
<td>12</td>
</tr>
</tbody>
</table>

Chapter 2. Simple Comparative Experiments

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-1</td>
<td>Introduction</td>
<td>14</td>
</tr>
<tr>
<td>2-2</td>
<td>Basic Statistical Concepts</td>
<td>15</td>
</tr>
<tr>
<td>2-3</td>
<td>Sampling and Sampling Distributions</td>
<td>20</td>
</tr>
<tr>
<td>2-4</td>
<td>Inferences About the Differences in Means, Randomized Designs</td>
<td>27</td>
</tr>
<tr>
<td>2-4.1</td>
<td>Hypothesis Testing</td>
<td>28</td>
</tr>
<tr>
<td>2-4.2</td>
<td>Choice of Sample Size</td>
<td>31</td>
</tr>
<tr>
<td>2-4.3</td>
<td>Confidence Intervals</td>
<td>33</td>
</tr>
<tr>
<td>2-4.4</td>
<td>The Case Where $\sigma_1^2 \neq \sigma_2^2$</td>
<td>34</td>
</tr>
<tr>
<td>2-4.5</td>
<td>The Case Where σ_1^2 and σ_2^2 Are Known</td>
<td>35</td>
</tr>
<tr>
<td>2-4.6</td>
<td>Comparing a Single Mean to a Specified Value</td>
<td>36</td>
</tr>
<tr>
<td>2-4.7</td>
<td>Summary</td>
<td>37</td>
</tr>
<tr>
<td>2-5</td>
<td>Inferences About the Difference in Means, Paired Comparison Designs</td>
<td>38</td>
</tr>
<tr>
<td>2-5.1</td>
<td>The Paired Comparison Problem</td>
<td>38</td>
</tr>
<tr>
<td>2-5.2</td>
<td>Advantages of the Paired Comparison Design</td>
<td>41</td>
</tr>
<tr>
<td>2-6</td>
<td>Inferences About the Variances of Normal Distributions</td>
<td>42</td>
</tr>
<tr>
<td>2-7</td>
<td>Problems</td>
<td>45</td>
</tr>
</tbody>
</table>
Chapter 3. Experiments with a Single Factor: The Analysis of Variance

3-1 An Example 51
3-2 The Analysis of Variance 53
3-3 Analysis of the Fixed Effects Model 55
 3-3.1 Decomposition of the Total Sum of Squares 55
 3-3.2 Statistical Analysis 59
 3-3.3 Estimation of the Model Parameters 63
 3-3.4 Model Adequacy Checking: Preview 66
 3-3.5 The Unbalanced Case 67
3-4 Comparison of Individual Treatment Means 67
 3-4.1 Graphical Comparison of Means 67
 3-4.2 Contrasts 69
 3-4.3 Orthogonal Contrasts 70
 3-4.4 Scheffé’s Method for Comparing All Contrasts 72
 3-4.5 Comparing Pairs of Treatment Means 73
 3-4.6 Comparing Treatments with a Control 79
3-5 The Random Effects Model 81
3-6 Sample Computer Output 87
3-7 Problems 87

Chapter 4. More About Single-Factor Experiments

4-1 Model Adequacy Checking 95
 4-1.1 The Normality Assumption 96
 4-1.2 Plot of Residuals in Time Sequence 99
 4-1.3 Plot of Residuals Versus Fitted Values \hat{y}_{ij} 100
 4-1.4 Selecting a Variance-Stabilizing Transformation 103
 4-1.5 Plots of Residuals Versus Other Variables 108
 4-1.6 Discovering Dispersion Effects 109
4-2 Choice of Sample Size 110
 4-2.1 Operating Characteristic Curves 110
 4-2.2 Specifying a Standard Deviation Increase 114
 4-2.3 Confidence Interval Estimation Method 115
4-3 Fitting Response Curves in the Single-Factor One-Way Model 116
 4-3.1 General Regression Approach 116
 4-3.2 Orthogonal Polynomials 118
4-4 The Regression Approach to the Analysis of Variance 121
4-5 Nonparametric Methods in the Analysis of Variance 126
 4-5.1 The Kruskal-Wallis Test 126
 4-5.2 General Comments on the Rank Transformation 127
4-6 Repeated Measures 128
4-7 Problems 130
Chapter 5. Randomized Blocks, Latin Squares, and Related Designs 134

5-1 The Randomized Complete Block Design 134
5-1.1 Statistical Analysis 135
5-1.2 Model Adequacy Checking 146
5-1.3 Estimating Missing Values 148
5-1.4 Estimating Model Parameters and the General Regression Significance Test 151
5-1.5 Sample Computer Output 154
5-2 The Latin Square Design 156
5-3 The Graeco–Latin Square Design 166
5-4 Problems 169

Chapter 6. Incomplete Block Designs 176

6-1 Introduction 176
6-2 Balanced Incomplete Block Designs 176
6-2.1 Statistical Analysis 177
6-2.2 Least Squares Estimation of the Parameters 183
6-3 Recovery of Interblock Information in the Balanced Incomplete Block Design 184
6-4 Partially Balanced Incomplete Block Designs 187
6-5 Youden Squares 190
6-6 Lattice Designs 193
6-7 Problems 194

Chapter 7. Introduction to Factorial Designs 197

7-1 Basic Definitions and Principles 197
7-2 The Advantage of Factorials 199
7-3 The Two-Factor Factorial Design 201
7-3.1 An Example 201
7-3.2 Statistical Analysis of the Fixed Effects Model 203
7-3.3 Model Adequacy Checking 210
7-3.4 Estimating the Model Parameters 213
7-3.5 Choice of Sample Size 216
7-3.6 The Assumption of No Interaction in a Two-Factor Model 217
7-3.7 One Observation per Cell 218
7-4 Random and Mixed Models 222
7-4.1 The Random Effects Model 222
7-4.2 Mixed Models 224
7-4.3 Choice of Sample Size 228
7-5 The General Factorial Design 228
7-6 Fitting Response Curves and Surfaces 237
7-7 Dealing with Unbalanced Data 244
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Sections</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Proportional Data: An Easy Case</td>
<td>7-7.1</td>
<td>245</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7-7.2</td>
<td>247</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7-7.3</td>
<td>249</td>
</tr>
<tr>
<td>7</td>
<td>Problems</td>
<td></td>
<td>249</td>
</tr>
<tr>
<td></td>
<td></td>
<td>245</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Rules for Sums of Squares and Expected Mean Squares</td>
<td>8-1</td>
<td>257</td>
</tr>
<tr>
<td></td>
<td>Rules for Sums of Squares</td>
<td>257</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rules for Expected Mean Squares</td>
<td>259</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Approximate F Tests</td>
<td>262</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Problems</td>
<td>8-4</td>
<td>268</td>
</tr>
<tr>
<td></td>
<td></td>
<td>247</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>The 2^k Factorial Design</td>
<td>9-1</td>
<td>270</td>
</tr>
<tr>
<td></td>
<td>Introduction</td>
<td>9-2</td>
<td>270</td>
</tr>
<tr>
<td></td>
<td>The 2^2 Design</td>
<td>9-3</td>
<td>278</td>
</tr>
<tr>
<td></td>
<td>The 2^3 Design</td>
<td>9-4</td>
<td>288</td>
</tr>
<tr>
<td></td>
<td>The General 2^k Design</td>
<td>9-5</td>
<td>289</td>
</tr>
<tr>
<td></td>
<td>A Single Replicate of the 2^k Design</td>
<td>9-6</td>
<td>304</td>
</tr>
<tr>
<td></td>
<td>The Addition of Center Points to the 2^k Design</td>
<td>9-7</td>
<td>309</td>
</tr>
<tr>
<td></td>
<td>Yates' Algorithm for the 2^k Design</td>
<td>9-8</td>
<td>310</td>
</tr>
<tr>
<td>9</td>
<td>Problems</td>
<td>9-8</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>247</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Confounding in the 2^k Factorial</td>
<td>10-1</td>
<td>319</td>
</tr>
<tr>
<td></td>
<td>Introduction</td>
<td>10-2</td>
<td>319</td>
</tr>
<tr>
<td></td>
<td>The 2^k Factorial Design in Two Blocks</td>
<td>10-3</td>
<td>326</td>
</tr>
<tr>
<td></td>
<td>The 2^k Factorial Design in Four Blocks</td>
<td>10-4</td>
<td>329</td>
</tr>
<tr>
<td></td>
<td>The 2^k Factorial Design in 2^p Blocks</td>
<td>10-5</td>
<td>329</td>
</tr>
<tr>
<td></td>
<td>Partial Confounding</td>
<td>10-6</td>
<td>333</td>
</tr>
<tr>
<td>10</td>
<td>Problems</td>
<td>10-6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>247</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Two-Level Fractional Factorial Designs</td>
<td>11-1</td>
<td>335</td>
</tr>
<tr>
<td></td>
<td>Introduction</td>
<td>11-2</td>
<td>336</td>
</tr>
<tr>
<td></td>
<td>The One-Half Fraction of the 2^k Design</td>
<td>11-3</td>
<td>349</td>
</tr>
<tr>
<td></td>
<td>The One-Quarter Fraction of the 2^k Design</td>
<td>11-4</td>
<td>358</td>
</tr>
<tr>
<td></td>
<td>The General 2^k-p Fractional Factorial Design</td>
<td>11-5</td>
<td>367</td>
</tr>
<tr>
<td></td>
<td>Resolution III Designs</td>
<td>11-6</td>
<td>375</td>
</tr>
<tr>
<td></td>
<td>Resolution IV and V Designs</td>
<td>11-7</td>
<td>378</td>
</tr>
<tr>
<td></td>
<td>Summary</td>
<td>11-8</td>
<td>378</td>
</tr>
<tr>
<td>11</td>
<td>Problems</td>
<td>11-8</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>247</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Some Other Topics Regarding Factorial and Fractional Factorial Designs</td>
<td>12-1</td>
<td>387</td>
</tr>
<tr>
<td></td>
<td>The 3^k Factorial Design</td>
<td>12-1.1</td>
<td>387</td>
</tr>
<tr>
<td>12</td>
<td>Notation and Motivation for the 3^k Design</td>
<td>12-1.1</td>
<td>387</td>
</tr>
</tbody>
</table>
Chapter 13. Nested or Hierarchical Designs

13-1 Introduction
13-2 The Two-Stage Nested Design
13-2.1 Statistical Analysis
13-2.2 Diagnostic Checking
13-2.3 Estimation of the Model Parameters
13-3 The General \(m \)-Stage Nested Design
13-4 Designs with Nested and Crossed Factors
13-5 Problems

Chapter 14. Multifactor Experiments with Randomization Restrictions

14-1 Randomized Blocks and Latin Squares as Multifactor Designs
14-2 The Split-Plot Design
14-3 The Split-Split-Plot Design
14-4 Problems

Chapter 15. Regression Analysis

15-1 Introduction
15-2 Simple Linear Regression
15-3 Hypothesis Testing in Simple Linear Regression
15-4 Interval Estimation in Simple Linear Regression
15-5 Model Adequacy Checking
Chapter 15. Regression Models

15-1 Residual Analysis 493
15-2 The Lack-of-Fit Test 493
15-3 The Coefficient of Determination 497
15-6 Multiple Linear Regression 498
15-7 Hypothesis Testing in Multiple Linear Regression 507
15-8 Other Linear Regression Models 512
15-9 Sample Computer Printout 515
15-10 Problems 515

Chapter 16. Response Surface Methods and Designs 521

16-1 Introduction to Response Surface Methodology 521
16-2 The Method of Steepest Ascent 523
16-3 Analysis of a Second-Order Model 531
16-3.1 Location of the Stationary Point 531
16-3.2 Characterizing the Response Surface 532
16-3.3 Ridge Systems 538
16-4 Experimental Designs for Fitting Response Surfaces 541
16-4.1 Designs for Fitting the First-Order Model 541
16-4.2 Designs for Fitting the Second-Order Model 542
16-4.3 Blocking in Response Surface Designs 548
16-5 Mixture Experiments 551
16-6 Evolutionary Operation 558
16-7 Problems 563

Chapter 17. Analysis of Covariance 569

17-1 Introduction 569
17-2 A Single-Factor Design with One Covariate 569
17-3 Development by the General Regression Significance Test 581
17-4 Other Covariance Models 584
17-5 Problems 587

Bibliography 590

Appendix 597

Table I. Cumulative Standard Normal Distribution 598
Table II. Percentage Points of the t Distribution 600
Table III. Percentage Points of the χ² Distribution 601
Table IV. Percentage Points of the F Distribution 602
Table V. Operating Characteristic Curves for the Fixed Effects Model Analysis of Variance 607
Table VI. Operating Characteristic Curves for the Random Effects Model Analysis of Variance 611
Table VII.	Significant Ranges for Duncan’s Multiple Range Test	615
Table VIII.	Percentage Points of the Studentized Range Statistic	617
Table IX.	Critical Values for Dunnett’s Test for Comparing	619
	Treatments with a Control	
Table X.	Coefficients of Orthogonal Polynomials	623
Table XI.	Random Numbers	624
Table XII.	Alias Relationships for 2^{k-p} Fractional Factorial Designs with $k \leq 11$ and $n \leq 64.$	626

Index 645