Properties of

INDIUM PHOSPHIDE

EMIS Datareviews Series No. 6
Contents

Foreword to Properties of Indium Phosphide ii

Introduction to Properties of Indium Phosphide iii

Contributing Authors iv

Acknowledgements ix

List of Abbreviations xi

1. BASIC PHYSICAL PROPERTIES 1

J.C.Brice, A.D.Prins, S.Adachi, K.Haruna, D.J.Dunstan, H.Maeta

1.1 Density of InP 3
1.2 Lattice parameter of InP 5
1.3 Bulk modulus of InP 8
1.4 Stiffness of InP 10
1.5 Compliance of InP 12
1.6 Piezoelectric constants of InP 13
1.7 Thermal expansion coefficient of InP 16
1.8 Specific heat of InP 18
1.9 Thermal conductivity of InP 20

2. RESISTIVITY 23

G.W.Iseler, S.J.Pearton, B.J.Sealy

2.1 Resistivity of bulk InP 25
2.2 Resistivity of ion-implanted CZ grown InP 33
2.3 Resistivity of ion-implanted epitaxial InP 36

3. CARRIER CONCENTRATIONS AND IONISATION RATES 39

P.Topham, J.P.R.David, A.R.Clawson

3.1 Carrier concentrations in undoped and doped epitaxial InP 41
3.2 Carrier concentrations in InP ion implanted with group II elements 49
3.3 Carrier concentrations in InP ion implanted with group IV elements 51
3.4 Carrier concentrations in InP ion implanted with group VI elements 52
3.5 Carrier ionisation rates in InP, electric field and orientation dependence 54
3.6 Carrier ionisation rates in InP, temperature dependence 58

4. ELECTRON MOBILITY, DIFFUSION AND LIFETIME 61

D.Lancefield, R.K.Ahrenkiel, B.J.Sealy

4.1 Electron mobility in InP: Overview 63
4.2 Electron mobility in bulk InP 65
4.3 Electron mobility in LPE InP 67
4.4 Electron mobility in VPE and MOVPE InP 68
4.5 Electron mobility in MBE InP 70
4.6 Electron mobility in ion implanted CZ grown InP 71
4.7 Electron diffusion length and diffusion coefficient in p-InP 75
4.8 Minority-carrier lifetime in InP
4.9 Surface recombination in InP

5. HOLE MOBILITY, DIFFUSION AND LIFETIME

W.Siegel, B.J.Sealy, R.K.Ahrenkiel, G.Kuehnel

5.1 Hole mobility in InP: Overview
5.2 Hole mobility in InP, temperature dependence
5.3 Hole mobility in ion-implanted CZ grown InP
5.4 Hole diffusion length in n-InP

6. BAND STRUCTURE

A.R.Adams, E.P.O'Reilly

6.1 Band structure of InP: Overview
6.2 Direct band gap of InP, temperature dependence
6.3 Direct band gap of InP, pressure dependence
6.4 Electron effective mass in InP, pressure dependence
6.5 Hole effective mass in InP, pressure dependence

7. OPTICAL FUNCTIONS

A.R.Forouhi, I.Bloomer

7.1 Optical functions of intrinsic InP: General remarks
7.2 Optical functions of intrinsic InP: Static and far-infrared (static IR)
7.3 Optical functions of intrinsic InP: Reststrahlen region
7.4 Optical functions of intrinsic InP: Transparent region
7.5 Optical functions of intrinsic InP: Bandgap region
7.6 Optical functions of intrinsic InP: Visible to UV region
7.7 Extrinsic effects on the optical functions of InP
7.8 Optical functions of InP: Table

8. IR ABSORPTION AND IMPURITY ENERGY LEVELS

A.Hennel, M.R.Brozel, W.Szuszkiewicz

8.1 IR absorption bands due to localised vibrational modes of impurities in InP
8.2 Absorption due to free carriers in InP
8.3 Electronic absorption bands of impurities in InP
8.4 Energy level due to Au in InP
8.5 Energy level due to Co in InP
8.6 Energy levels due to Cr in InP
8.7 Energy levels due to Cu in InP
8.8 Energy level due to Fe in InP
8.9 Energy level due to Mn in InP
8.10 Energy levels due to Ni in InP
8.11 Energy level due to Ti in InP
8.12 Energy level due to V in InP
9. PHOTOLUMINESCENCE, RAMAN AND REFLECTION SPECTROSCOPY


9.1 Photoluminescence spectra of InP: Overview
9.2 Photoluminescence of InP at high pressure
9.3 Photoluminescence spectra of electron-irradiated InP
9.4 Photoluminescence spectra of InP doped or implanted with group IV elements
9.5 Photoluminescence spectra of InP doped or implanted with group VI elements
9.6 Photoluminescence bands of transition metals, rare earths and actinides in InP
9.7 Photoluminescence spectra of VPE and OMVPE InP
9.8 Photoluminescence spectra of MBE InP
9.9 Raman spectra of InP
9.10 IR reflection spectra of InP

10. PHOTOCONDUCTIVITY SPECTRA

R.A. Stradling

10.1 Far IR photoconductivity spectra of shallow donors in InP: General remarks
10.2 Far IR photoconductivity spectra of shallow donors in VPE InP
10.3 Far IR photoconductivity spectra of shallow donors in MOCVD InP
10.4 Far IR photoconductivity spectra of shallow donors in bulk samples of InP
10.5 Far IR photoconductivity spectra of shallow donors in LPE and MBE InP
10.6 Far IR photoconductivity spectra of shallow donors in neutron transmutation doped InP
10.7 A summary of chemical shifts for different substitutional donors in InP obtained from far IR photoconductivity spectroscopy and a comparison with values obtained for GaAs

11. DEFECTS, DEEP LEVELS AND THEIR DETECTION


11.1 Extended defects in bulk InP
11.2 ESR and ODMR detection of paramagnetic defects in InP
11.3 Deep level transient spectroscopy of InP
11.4 Structure of microprecipitates in SI InP
11.5 Passivation of defects in InP by hydrogenation
11.6 Defect energy levels in SI InP
11.7 Defect energy levels in LPE InP
11.8 Defect energy levels in VPE and OMVPE InP
11.9 Defect energy levels in MBE InP
11.10 Defect energy levels in electron-irradiated InP

12. DIFFUSION OF IMPURITIES

I. Harrison

12.1 Diffusion of Cr into InP
12.2 Diffusion of Fe into InP
12.3 Diffusion of Cu into InP
12.4 Diffusion of Ag into InP
12.5 Diffusion of Au into InP
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.6</td>
<td>Diffusion of Zn into InP</td>
<td>272</td>
</tr>
<tr>
<td>12.7</td>
<td>Diffusion of Cd into InP</td>
<td>276</td>
</tr>
<tr>
<td>12.8</td>
<td>Diffusion of S into InP</td>
<td>278</td>
</tr>
<tr>
<td>12.9</td>
<td>Diffusion induced disorder in InGaAsP/InP</td>
<td>280</td>
</tr>
<tr>
<td>13.</td>
<td>SURFACE STRUCTURE AND OXIDATION</td>
<td>283</td>
</tr>
<tr>
<td>13.1</td>
<td>Surface structure of clean InP</td>
<td>285</td>
</tr>
<tr>
<td>13.2</td>
<td>Composition and resistivity of oxidised InP</td>
<td>287</td>
</tr>
<tr>
<td>13.3</td>
<td>Oxide-InP interface composition and microstructure</td>
<td>289</td>
</tr>
<tr>
<td>13.4</td>
<td>Oxidation of InP</td>
<td>291</td>
</tr>
<tr>
<td>14.</td>
<td>INTERFACES</td>
<td>295</td>
</tr>
<tr>
<td>14.1</td>
<td>Metal/InP interface atomic geometries of InP with adsorbed overlayers</td>
<td>297</td>
</tr>
<tr>
<td>14.2</td>
<td>Ohmic contacts to InP and related materials</td>
<td>299</td>
</tr>
<tr>
<td>14.3</td>
<td>Structure of the Ag/InP interface</td>
<td>304</td>
</tr>
<tr>
<td>14.4</td>
<td>Structure of the Au/InP interface</td>
<td>307</td>
</tr>
<tr>
<td>14.5</td>
<td>Barrier height at the Ag/InP interface</td>
<td>309</td>
</tr>
<tr>
<td>14.6</td>
<td>Barrier height at the Au/InP interface</td>
<td>312</td>
</tr>
<tr>
<td>14.7</td>
<td>Band bending at dielectric/InP interfaces</td>
<td>315</td>
</tr>
<tr>
<td>14.8</td>
<td>Conduction band and valence band offset at the InP/InGaAsP interface</td>
<td>318</td>
</tr>
<tr>
<td>14.9</td>
<td>Gap states at InP surfaces and interfaces</td>
<td>323</td>
</tr>
<tr>
<td>14.10</td>
<td>Surface recombination velocities at interfaces with InP</td>
<td>328</td>
</tr>
<tr>
<td>15.</td>
<td>ETCHING</td>
<td>333</td>
</tr>
<tr>
<td></td>
<td>K. Matsushita, S. Adachi, H. L. Hartnagel</td>
<td></td>
</tr>
<tr>
<td>15.1</td>
<td>Etching of InP: Overview</td>
<td>335</td>
</tr>
<tr>
<td>15.2</td>
<td>Wet etching of InP</td>
<td>337</td>
</tr>
<tr>
<td>15.3</td>
<td>Plasma etching of InP</td>
<td>344</td>
</tr>
<tr>
<td>15.4</td>
<td>Ion-beam milling and sputter etching of InP</td>
<td>346</td>
</tr>
<tr>
<td>15.5</td>
<td>Reactive ion and ion-beam etching of InP</td>
<td>350</td>
</tr>
<tr>
<td>15.6</td>
<td>Laser-assisted etching of InP</td>
<td>354</td>
</tr>
<tr>
<td>16.</td>
<td>ION IMPLANTATION</td>
<td>359</td>
</tr>
<tr>
<td></td>
<td>B.J. Sealy, R.P. Webb</td>
<td></td>
</tr>
<tr>
<td>16.1</td>
<td>Ion implantation of InP: Overview</td>
<td>361</td>
</tr>
<tr>
<td>16.2</td>
<td>Ion ranges in InP: Discussion</td>
<td>363</td>
</tr>
<tr>
<td>16.3</td>
<td>Range profile statistics for various ions in InP</td>
<td>365</td>
</tr>
</tbody>
</table>