Foundations of Applied Superconductivity

Terry P. Orlando
Kevin A. Delin
Massachusetts Institute of Technology

Addison-Wesley Publishing Company
Reading, Massachusetts • Menlo Park, California • New York
Don Mills, Ontario • Wokingham, England • Amsterdam • Bonn
Sydney • Singapore • Tokyo • Madrid • San Juan
CONTENTS

Preface ix

Note to the Instructor xiii

Chapter 1
A Survey of Superconductivity 1
1.1 Introduction 1
1.2 Basic Properties of Superconductors 2
1.3 Models of Superconductivity 7
1.4 Simple Superconducting Systems 9
References 14

Chapter 2
Perfect Conductivity 17
2.1 Introduction 17
2.2 Circuits and Time Constants 18
2.3 Field Theory and Time Constants 26
2.4 Magnetoquasistatics 41
2.5 The First London Equation 53
2.6 Fields Inside a Perfect Conductor 61
2.7 Summary 68
References 69
Problems 70

Chapter 3
The Classical Model 77
3.1 Introduction 77
3.2 The Second London Equation 78
3.3 Superconducting Lumped Circuits 87
3.4 The Two-Fluid Model 94
3.5 Electromagnetic Power 105
Chapter 7
Vortex Interactions and Dynamics 329

7.1 Introduction 329
7.2 Vortex Interactions 330
7.3 The Vortex Lattice 344
7.4 Transport Currents and Flux Flow 353
7.5 Pinning and the Critical State 368
7.6 Summary 384
 References 385
 Problems 386

Chapter 8
Basic Josephson Junctions 393

8.1 Introduction 393
8.2 Josephson Tunneling 398
8.3 Basic Lumped Junctions 405
8.4 Superconducting Quantum Interference 410
8.5 Short Josephson Junctions 420
8.6 Long Josephson Junctions 431
8.7 Summary 438
 References 440
 Problems 441

Chapter 9
Generalized Junctions and Devices 449

9.1 Introduction 449
9.2 Junction Resistance and Capacitance 450
9.3 Response to DC Driving Sources 458
9.4 Response to AC Driving Sources 466
9.5 The DC SQUID 471
9.6 Time Constants for Digital Circuits 474
9.7 Summary 483
 References 485
 Problems 486

Chapter 10
Beyond the Macroscopic Quantum Model 489

10.1 Introduction 489
10.2 The Ginzburg-Landau Theory 490
Contents

10.3 The Ginzburg-Landau Equations 500
10.4 Microscopic Interactions 514
10.5 Characteristic Lengths 528
10.6 Summary 545
 References 547
 Problems 548

Appendix A
Vector Identities 557

Appendix B
Differential Operations in Various Coordinates 559

Appendix C
Modified Bessel Functions 563

Appendix D
Index Notation 567

Appendix E
Fourier Transforms 571

Appendix F
Properties of Typical Superconductors 575

Index 579

Front Endpaper
Basic Relations

Rear Endpaper
Physical Constants