Contents

UNIT 1 DETECTORS AND DETECTOR OPERATION

<table>
<thead>
<tr>
<th>Chapter 1. Introduction and Overview</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Infrared Radiation</td>
<td>3</td>
</tr>
<tr>
<td>1.2 Heat Transfer</td>
<td>3</td>
</tr>
<tr>
<td>1.3 Thermal Detectors</td>
<td>5</td>
</tr>
<tr>
<td>1.4 Planck’s Law</td>
<td>6</td>
</tr>
<tr>
<td>1.5 Waves and Photons</td>
<td>7</td>
</tr>
<tr>
<td>1.6 Quantum (Photon) Detectors</td>
<td>8</td>
</tr>
<tr>
<td>1.7 IR Detectors as Transducers</td>
<td>8</td>
</tr>
<tr>
<td>1.8 Detector Parameters: Definitions</td>
<td>9</td>
</tr>
<tr>
<td>1.8.1 Responsivity</td>
<td>10</td>
</tr>
<tr>
<td>1.8.2 Noise</td>
<td>12</td>
</tr>
<tr>
<td>1.8.3 Signal-to-Noise Ratio</td>
<td>14</td>
</tr>
<tr>
<td>1.8.4 Noise Equivalent Power</td>
<td>15</td>
</tr>
<tr>
<td>1.8.5 SpecificDetectivity</td>
<td>16</td>
</tr>
<tr>
<td>1.8.6 Linearity and Saturation</td>
<td>18</td>
</tr>
<tr>
<td>1.8.7 Frequency Response</td>
<td>19</td>
</tr>
<tr>
<td>1.8.8 Spatial Considerations</td>
<td>21</td>
</tr>
<tr>
<td>1.8.9 Crosstalk</td>
<td>22</td>
</tr>
<tr>
<td>References</td>
<td>23</td>
</tr>
<tr>
<td>Suggested Reading</td>
<td>23</td>
</tr>
<tr>
<td>Problems</td>
<td>23</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 2. Detector Types, Mechanisms, and Operation</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Thermal Detectors</td>
<td>25</td>
</tr>
<tr>
<td>2.1.1 Bolometers</td>
<td>26</td>
</tr>
<tr>
<td>2.2 Photon (Quantum) Detectors</td>
<td>30</td>
</tr>
<tr>
<td>2.2.1 Carrier Generation</td>
<td>31</td>
</tr>
<tr>
<td>2.2.2 Spectral Response of Photon Detectors</td>
<td>32</td>
</tr>
<tr>
<td>2.2.3 Temperature Dependence of Semiconductor Carrier Density</td>
<td>34</td>
</tr>
<tr>
<td>2.2.4 Types of Photon Detectors</td>
<td>36</td>
</tr>
<tr>
<td>2.2.5 Diodes and Photovoltaic Detectors</td>
<td>37</td>
</tr>
<tr>
<td>2.2.6 Photoconductive Detectors</td>
<td>40</td>
</tr>
</tbody>
</table>
3.3.3 Solid Angles for Specific Geometries 132
3.3.4 More Complicated Geometries: Angle Factors 134

3.4 Time Dependence (Modulation) 137
3.4.1 Fourier Analysis of Waveforms 137
3.4.2 Modulation Factors 138
3.4.3 Sine-Wave Modulation 144

3.5 Examples and Cases of Special Interest 146
3.5.1 Background in a Test Dewar—Narrow Bandpass Filter 148
3.5.2 Background in a Test Dewar—Wide Bandpass Filter 150
3.5.3 Incidence from a Blackbody Test Set (All Wavelengths) 151
3.5.4 Sunlight on the Earth 153
3.5.5 Sunlight Reflected from a Window 153
3.5.6 Moonlight on the Earth 154
3.5.7 Sterance from the Earth 157

3.6 FORTRAN Computer Code for Radiometric Calculations 157
3.6.1 AMDOF: Prints Table of Modulation Factors 157
3.6.2 AMODF2: Generates Case II Modulation Factors 159
3.6.3 AMODF3: Generates Case III Modulation Factors 159
3.6.4 AFLUX: Generates rms Incidences 160
3.6.5 FLUX TABLES: Prints Tables of Blackbody Incidence 161

References 162
Suggested Reading 163
Problems
- General Radiometry 164
- Spectral Content 165
- The Spatial Integral 168
- Modulation 169

Chapter 4 The Test Set 171
4.1 Types of Test Sets 171
4.1.1 Blackbody and Dewar 171
4.1.2 Chambers 172
4.1.3 Focused Optics: Spot and Line Scanners 172
4.1.4 Spectrometers 173
4.1.5 Special Applications 176

4.2 Design and Documentation 176
4.2.1 Requirement Definition 176
4.2.2 Design Review 177
4.2.3 Scale Drawings 179
4.2.4 Emissivity and Reflectivity in the Infrared 179

4.3 The Blackbody Test Set 180
4.3.1 Blackbodies 181
4.3.2 Mounting of the Blackbody 181
4.3.3 Measurement of Blackbody Temperature 182
4.3.4 Measurement and Documentation of Blackbody Aperture Diameters 184
4.3.5 Shutters and Choppers 186

4.4 Between the Source and Detector 188
4.4.1 Folding Mirrors 188
4.4.2 Orientation of Knife-Edged Apertures and Baffles 188
4.4.3 Unwanted Reflecting Surfaces 188
4.4.4 Accuracy Required in Measuring Detector-to-Blackbody Distances 190

4.5 Dewars 193
4.5.1 Design Decisions for Background Reduction 193
4.5.2 Effect of Ambient Temperature on Background 196
4.5.3 Field of View Baffles 196
4.5.4 Windows and Filters 199

4.6 Test Set Evaluation and Troubleshooting 203

4.7 The Radiometric Calibration Problem 204
4.7.1 Radiometric Standards 205
4.7.2 Radiometric Verification 205

References 207

Suggested Reading 209
IR Reflectance of Optical Blacks 209
IR Reflectance of “Mirrors” (High-Reflectivity Coatings) 210
Blackbody Theory and Design 211

Problems 212

Chapter 5 Detector Testing 213

5.1 Preliminaries 213
5.1.1 Information Needed 214
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1.2</td>
<td>Test Planning</td>
<td>215</td>
</tr>
<tr>
<td>5.1.3</td>
<td>Test Procedure</td>
<td>215</td>
</tr>
<tr>
<td>5.1.4</td>
<td>Pretest Operations</td>
<td>216</td>
</tr>
<tr>
<td>5.2</td>
<td>V-I Curves</td>
<td>217</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Equipment Used for V-I Curves</td>
<td>218</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Analysis of V-I Curves for Photovoltaic Detectors</td>
<td>218</td>
</tr>
<tr>
<td>5.2.3</td>
<td>V-I Data for Photoconductors</td>
<td>220</td>
</tr>
<tr>
<td>5.3</td>
<td>Noise</td>
<td>220</td>
</tr>
<tr>
<td>5.3.1</td>
<td>Digital Calculations</td>
<td>220</td>
</tr>
<tr>
<td>5.3.2</td>
<td>Error in Digital Noise Measurements</td>
<td>222</td>
</tr>
<tr>
<td>5.3.3</td>
<td>Analog Measurements of Noise: Meters and Their Errors</td>
<td>227</td>
</tr>
<tr>
<td>5.3.4</td>
<td>Bandwidth for Noise Calculations</td>
<td>227</td>
</tr>
<tr>
<td>5.3.5</td>
<td>Characterization of Low-Frequency Noise</td>
<td>229</td>
</tr>
<tr>
<td>5.4</td>
<td>Blackbody Signal and Responsivity</td>
<td>234</td>
</tr>
<tr>
<td>5.4.1</td>
<td>Blackbody Test Set</td>
<td>235</td>
</tr>
<tr>
<td>5.4.2</td>
<td>Blackbody Responsivity</td>
<td>235</td>
</tr>
<tr>
<td>5.4.3</td>
<td>Optimization of Bias Voltage</td>
<td>236</td>
</tr>
<tr>
<td>5.5</td>
<td>Accuracy of Blackbody Responsivity Data</td>
<td>237</td>
</tr>
<tr>
<td>5.5.1</td>
<td>Effect of Sample Size on Signal Uncertainty</td>
<td>238</td>
</tr>
<tr>
<td>5.5.2</td>
<td>Effective Area</td>
<td>239</td>
</tr>
<tr>
<td>5.5.3</td>
<td>Confidence-Building Techniques</td>
<td>240</td>
</tr>
<tr>
<td>5.5.4</td>
<td>Hints for Data Reduction</td>
<td>241</td>
</tr>
<tr>
<td>5.6</td>
<td>Analysis of Detector Current, Signal, and Noise Data</td>
<td>246</td>
</tr>
<tr>
<td>5.7</td>
<td>Frequency Response</td>
<td>249</td>
</tr>
<tr>
<td>5.7.1</td>
<td>Response versus Frequency</td>
<td>249</td>
</tr>
<tr>
<td>5.7.2</td>
<td>Time Constant and Corner Frequency</td>
<td>250</td>
</tr>
<tr>
<td>5.8</td>
<td>Low-Background Testing</td>
<td>252</td>
</tr>
<tr>
<td>5.8.1</td>
<td>Background Reduction Methods</td>
<td>253</td>
</tr>
<tr>
<td>5.8.2</td>
<td>Background Leaks</td>
<td>254</td>
</tr>
<tr>
<td>5.8.3</td>
<td>Low-Signal Problems</td>
<td>254</td>
</tr>
<tr>
<td>5.8.4</td>
<td>High-Impedance Electronics</td>
<td>255</td>
</tr>
<tr>
<td>5.8.5</td>
<td>Frequency Response</td>
<td>256</td>
</tr>
<tr>
<td>5.9</td>
<td>Spectral Measurements</td>
<td>257</td>
</tr>
<tr>
<td>5.9.1</td>
<td>Relative Spectral Response</td>
<td>257</td>
</tr>
<tr>
<td>5.9.2</td>
<td>Absolute Spectral Response Values</td>
<td>260</td>
</tr>
<tr>
<td>5.9.3</td>
<td>Effective Incidence and Blackbody-to-Peak Conversion</td>
<td>260</td>
</tr>
<tr>
<td>5.9.4</td>
<td>Reflectance and Transmittance Measurements</td>
<td>261</td>
</tr>
</tbody>
</table>
5.10 Spatial Measurements 262
 5.10.1 Spot Scans 262
 5.10.2 Modulation Transfer Function 263
 5.10.3 Crosstalk 264
5.11 Test Reports 265
 References 267
 Suggested Reading 268
 Problems 268

UNIT 2 RELATED SKILLS 273

Chapter 6. Science and Measurements 275

6.1 Measurements 275
 6.1.1 Units 276
 6.1.2 Basic Estimate 276
 6.1.3 Rejecting Data 278
 6.1.4 Uncertainty 278
6.2 Experimental Error 279
 6.2.1 Systematic Errors 280
 6.2.2 Random Errors 280
 6.2.3 Illegitimate Errors 280
 6.2.4 Validity of the Model 281
6.3 Estimating Uncertainties 282
 6.3.1 Subjective or Intuitive Estimate of Uncertainty 282
 6.3.2 The Probability of Blunders 282
 6.3.3 Estimating the Magnitude of Systematic Errors 283
 6.3.4 Estimating the Magnitude of Random Errors 283
6.4 Probability 284
 6.4.1 An Introduction to Probability: Normal Curve of Error 284
 6.4.2 Standard Deviations for Common Best Estimates 285
 6.4.3 Example of Standard Deviations for Two Data Sets 290
6.5 Propagation of Errors 290
 6.5.1 Direct Method 291
 6.5.2 Shortcuts in Estimating Error Propagation 292
 6.5.3 Probable Total Error 293
6.6 Reporting Uncertainties 293
6.7 The Ethics of Scientific Work 294
 6.7.1 Independent Checks 295
 6.7.2 Aggressive Learning 296
 6.7.3 A Note of Caution 296
6.8 The Overall Test Task 296
 6.8.1 Designing the Test 296
 6.8.2 Data Review and Interpretation 297
 6.8.3 Presentation of Results 298
 6.8.4 Graphing 299
References 300
Suggested Reading 300
Problems 301

Chapter 7. Cryogenics 305

7.1 Cryogens 305
 7.1.1 Heat of Vaporization 307
 7.1.2 Enthalpy 308
 7.1.3 Storage of Cryogens; Dewars 308
 7.1.4 Transfer of Cryogens 309
 7.1.5 Continual Transfer Systems 309
 7.1.6 Liquid Level Sensors 310
7.2 Thermal Properties of Solids 311
 7.2.1 Thermal Expansion 311
 7.2.2 Heat Conduction; Thermal Conductivity 312
 7.2.3 Heat Capacity; Specific Heat 320
 7.2.4 Electrical Analogs 322
7.3 Dewar Design 323
7.4 Refrigerators 325
 7.4.1 Joule-Thompson Liquefier 325
 7.4.2 Thermoelectric Coolers 325
 7.4.3 Radiation Coolers 326
7.5 Temperature Measurement 326
 7.5.1 Temperature Sensors 326
 7.5.2 Mounting of Cryogenic Thermometers 331
7.6 Cryogenics and Safety 331
References 333
Suggested Reading 335
 Cryogenics: General and Engineering 335
 Handbook and Tabular Material 335
Problems 337
9.1.2 Required Thickness for Vacuum Windows 374
9.1.3 Index of Refraction 375
9.1.4 Dispersion 375
9.1.5 Transmittance of Windows 376

9.2 Geometrical Optics 376
9.2.1 Angle of Reflection 376
9.2.2 Refraction Snell's Law 377
9.2.3 Optical Thickness 377

9.3 Reflectance and Transmittance Calculations 378
9.3.1 Reflectance and Transmittance of Nonabsorbing Materials 378
9.3.2 Reflectance at Other than Normal Incidence 382
9.3.3 Absorption in Optical Materials 382
9.3.4 Mirrors and Blacks 382
9.3.5 Bidirectional Reflectance Distribution Function 385

9.4 Interference Effects 385
9.4.1 Antireflection Coatings 386
9.4.2 Spectral Filters 387
9.4.3 Spectral Transmittance Measurements 388
9.4.4 Neutral Density Filters 389
9.4.5 Transmittance of Two Filters in Series 389

9.5 Diffraction 391
9.5.1 Resolution Limits and Criteria 393
9.5.2 Resolution of the Human Eye 395

References 397
Suggested Reading 397
Catalogues and Handbooks from Vendors 398
Problems 399

Chapter 10. Electronics 401
10.1 Passive Components 401
10.1.1 Resistors 402
10.1.2 Capacitors 408

10.2 Transistors and Their Use as Amplifiers 412
10.2.1 Bipolar Junction Transistors 412
10.2.2 Junction Field-Effect Transistors 421
10.2.3 Metal-Oxide Field-Effect Transistors 425

10.3 Amplifiers 428
10.3.1 Feedback Theory and Stability 428
10.3.2 Operational Amplifiers 430
10.3.3 Amplifiers for High-Impedance Detectors 433
CONTENTS

10.3.4 Amplifiers for Intermediate Impedance Detectors 436
10.3.5 Amplifiers for Low-Impedance Detectors 438
10.4 Laboratory Testing 440
 10.4.1 Grounding 441
 10.4.2 Laboratory Equipment 442
References 444
Suggested Reading 445
Problems 445

APPENDIXES

Appendix A Symbols and Abbreviations 451
Appendix B Glossary 455
Appendix C Decibel Convention 457
Appendix D Characterization of Semiconductor Materials 461
 1. Resistance Measurements 461
 1.1 Rectangular Bar 461
 1.2 Four-Lead Method 461
 1.3 Hall Bar 462
 2. Wafer Measurements 463
 3. Hall Effect 464
 4. Energy Level and Band Gap Determination 467
 5. Lifetime 468
 References 468

Index 469