Contents

PREFACE TO THE FIRST EDITION xi

PREFACE TO THE SECOND EDITION xiii

1 HISTORICAL BACKGROUND 1
 1.0 Early Beginnings, 1
 1.1 Pre-World War I Component Technology, 3
 1.2 World War I Acoustic Technology, 4
 1.3 Acoustic Development between the Wars, 9
 1.4 World War II and Beyond, 10
 1.5 Conclusion, 13

2 ACOUSTIC WAVES IN A HOMOGENEOUS MEDIUM 16
 2.0 Introduction, 16
 2.1 Electrical Analog of Plane Wave Transmission, 18
 2.2 Acoustic Plane Waves in a Homogeneous Medium, 26
 2.3 Spherical Acoustic Waves in a Homogeneous Medium, 32
 2.4 Pulsating Spherical Source, 38
 2.5 Units, Reference Standards, and Decibel Notation, 42
 2.6 Example: Pulsating Spherical Source, 48
3 ACOUSTIC TRANSDUCERS 57

3.0 Introduction, 57
3.1 Longitudinal Vibration of a Simple Bar, 58
3.2 Hydrophone Operation, 62
3.3 Projector Operation, 77

4 REFLECTION, TRANSMISSION, AND REFRACTION 91

4.0 Introduction, 91
4.1 Normal Incidence, 91
4.2 Oblique Incidence, 98
4.3 Two-Boundary Problem, 102
4.4 Ray Acoustics: Refraction with a Constant Sound Speed Gradient, 106

5 SOUND TRANSMISSION IN THE OCEAN 117

5.0 Introduction, 117
5.1 Sound Speed Variation in the Ocean, 118
5.2 Acoustic Loss at the Ocean Surface, 120
5.3 Reflection Loss at the Ocean Bottom, 123
5.4 Absorption of Sound in the Ocean, 127
5.5 Acoustic Characteristics of the Surface Layer, 131
5.6 The Deep Sound Channel, 140
5.7 Convergence Zone Transmission, 140
5.8 Reliable Acoustic Path, 141
5.9 Fluctuation of Sound in the Sea, 143

6 FOURIER METHODS 149

6.0 Introduction, 149
6.1 Expansion of Functions, 149
6.2 Periodic Functions: Complex Fourier Series, 151
6.3 Time-Limited Waveforms: The Fourier Integral Transformation, 156
6.4 Basic Building Block Functions, 159
6.5 Time-Domain Response of Linear Systems, 167
6.6 Basic Operations in Fourier Analysis, 170
6.7 Repetition Operator and Sampling Function, 176
6.8 Tabulation of Rules and Pairs, 180
6.9 Complex Representation of Signals: Envelope Functions, 187

7 DISCRETE FOURIER METHODS 192

7.0 Introduction, 192
7.1 Discrete Representation of Continuous Functions, 192
8 CORRELATION AND CORRELATION FUNCTIONS 204
8.0 Introduction, 204
8.1 Correlation of Vectors, 204
8.2 Correlation of Time Waveforms, 207
8.3 Normalized Correlation and Correlation Functions, 209
8.4 Resolution and Signal Ambiguity Functions, 215

9 RANDOM PROCESSES 232
9.0 Introduction, 232
9.1 Definition of Probability, 232
9.2 Discrete Random Variables, 235
9.3 Continuous Random Variables, 237
9.4 Moments, 239
9.5 Examples of Density Functions, 243
9.6 The Random Process, 248
9.7 Functions of Random Variables, 250
9.8 Correlation Functions of Random Processes, 265
9.9 Example: Multipath Transmission Channel, 273

10 AMBIENT NOISE IN THE OCEAN 280
10.0 Introduction, 280
10.1 Sources of Ambient Noise, 281
10.2 Correlation Properties of Ambient Noise, 284
10.3 Use of the Spatial Correlation Function in System Noise Calculations, 299

11 SPATIAL FILTERING I: BEAMFORMING 303
11.0 Introduction, 303
11.1 One-Dimensional Spatial Filters, 307
11.2 Discrete Spatial Arrays, 312
11.3 Array Shading: Nonuniform Weights, 314
11.4 Beam Steering, 317
11.5 Generalized Array Gain for the Discrete Line Array, 320
11.6 Use of Array Gain in System Performance Analysis, 325
11.7 Target Angle Estimation, 327
11.8 Multidimensional Spatial Filters, 332
12 ACOUSTIC CHARACTERISTICS OF TARGETS 339
12.0 Introduction, 339
12.1 Passive Acoustic Signatures of Ships and Submarines, 340
12.2 Target Strength for Active Systems, 345
12.3 Reverberation, 348

13 STATISTICAL BASIS FOR PERFORMANCE ANALYSIS 361
13.0 Introduction, 361
13.1 Hypothesis Testing, 361
13.2 Receiver Operating Characteristics, 378
13.3 Estimation of Signal Parameters, 380

14 SPATIAL FILTERING II: ADAPTIVE METHODS 390
14.0 Introduction, 390
14.1 Review of the Conventional Spatial Filter, 391
14.2 Optimum Filter for Maximum SNR: Supergain, 395
14.3 High-Resolution Beamforming, 403
14.4 Matched Field Processing, 420

15 SYSTEM PERFORMANCE ANALYSIS: EXAMPLES 424
15.0 Introduction, 424
15.1 Passive Narrowband Detection, 424
15.2 Passive Broadband Detection, 428
15.3 Passive Broadband Angle Tracking, 433
15.4 Passive Multipath Ranging, 438
15.5 Active System Detection Performance, 442
15.6 Active System with Large Time–Bandwidth Signal, 448

APPENDIX: ANSWERS FOR SELECTED PROBLEMS 452

INDEX 460