Contents

Introduction xi
Why combinatorics? xi
Counting problems xii
What you need to know xiii
Are you sitting comfortably? xiv
Acknowledgements xv

1 Permutations and combinations 1
 1.1 Introduction 1
 1.2 Permutations 1
 1.3 Combinations 5
 1.4 Applications to probability problems 11

2 The inclusion–exclusion principle 19
 2.1 Double counting 19
 2.2 Derangements 25

3 Partitions 29
 3.1 What are partitions? 29
 3.2 Dot diagrams 32
 3.3 What is a formula? 36
 3.4 A lower bound for $p_k(n)$ 40

4 Stirling's approximation 43
 4.1 Asymptotic functions 43
 4.2 Stirling's formula 47
 4.3 A note on James Stirling 54
 4.4 A lower bound for $p(n)$ 55
Contents

5 Partitions and generating functions 58
 5.1 Introduction 58
 5.2 Generating functions 62
 5.3 Applications to partition numbers 66
 5.4 Euler’s identity 70
 5.5 The Hardy–Ramanujan formula 73
 5.6 The story of Hardy and Ramanujan 76

6 Generating functions and recurrence relations 80
 6.1 What is a recurrence relation? 80
 6.2 The use of generating functions 82
 6.3 Homogeneous linear recurrence relations 86
 6.4 Inhomogenous linear recurrence relations 93
 6.5 Some non-linear recurrence relations 100
 6.6 Partial fractions 104

7 Permutations and groups 109
 7.1 Permutations 109
 7.2 Groups of permutations 113
 7.3 Symmetry groups 120
 7.4 Subgroups and Lagrange’s Theorem 123
 7.5 Orders of group elements 129
 7.6 The orders of permutations 131

8 Group actions 136
 8.1 Colourings 136
 8.2 The axioms for group actions 139
 8.3 Orbits 142
 8.4 Stabilizers 144

9 Graphs 150
 9.1 What are graphs? 150
 9.2 Labelled graphs 154

10 Counting patterns 158
 10.1 Burnside’s Theorem 158
 10.2 Applications of Burnside’s Theorem 160

11 Pólya’s Theorem 167
 11.1 Colourings and group actions 167
 11.2 Pattern inventories 170
 11.3 The cycle index of a group 173
 11.4 Pólya’s Theorem: statement and examples 177
 11.5 Pólya’s Theorem: the proof 181