MOLECULAR THEORY
of
GASES and LIQUIDS

Joseph O. Hirschfelder
DEPARTMENT OF CHEMISTRY AND THEORETICAL CHEMISTRY INSTITUTE UNIVERSITY OF WISCONSIN

Charles F. Curtiss
DEPARTMENT OF CHEMISTRY AND THEORETICAL CHEMISTRY INSTITUTE UNIVERSITY OF WISCONSIN

R. Byron Bird
DEPARTMENT OF CHEMICAL ENGINEERING UNIVERSITY OF WISCONSIN

Corrected Printing with Notes Added

With the assistance of the staff of the former University of Wisconsin Naval Research Laboratory

JOHN WILEY & SONS, INC.
NEW YORK • LONDON • SYDNEY

April 1967
CONTENTS

NOTE ON NOTATION xxi
VECTOR AND TENSOR NOTATION xxiii

CHAPTER 1. INTRODUCTION AND BACKGROUND INFORMATION 1
1. The Equation of State—The Virial Coefficients 1
 a. An ultra-simplified theory of the equation of state of dilute gases 2
 b. An ultra-simplified theory of the equation of state of dense gases and liquids 4
 c. Introduction to the statistical mechanical theory of the equation of state 6
2. The Kinetic Theory of Gases—The Transport Coefficients 8
 a. An ultra-simplified kinetic theory of dilute gases 9
 b. Introduction to the rigorous kinetic theory of gases 17
 c. The equations of change and their applications 21
3. Intermolecular Forces—Intermolecular Potential Energy Functions 22
 a. Sources of information about intermolecular forces 23
 b. Contributions to the intermolecular forces 25
 c. Empirical intermolecular potential functions 31
4. Classical Mechanics 35
 a. Equations of motion in classical mechanics 36
 b. The Liouville equation 40
 c. The virial theorem 41
5. Molecular Collisions in Classical Mechanics 43
 a. Summational invariants of an encounter 43
 b. The trajectories of the individual particles during a collision 45
 c. The angle of deflection in a collision 50
6. Quantum Mechanics 52
 a. Experimental manifestations of non-classical behavior 52
 b. Wave-mechanical description of systems 53
 c. Operators in wave mechanics 56
 d. Indistinguishability of identical particles 59
 e. Approximation methods for solving the Schrödinger equation 61
 f. The quantum mechanical virial theorem 68
7. Molecular Collisions in Quantum Mechanics 69
 a. Interaction of two-particles: the phase shifts 69
 b. Probability of an angle of deflection 72

PART I. EQUILIBRIUM PROPERTIES

CHAPTER 2. STATISTICAL MECHANICS 79
1. Description of Statistical Ensembles in Classical Mechanics 79
 a. Configuration, momentum, and phase spaces 80
 b. Ensembles and distribution functions 82
c. The change with time of the probability density 84

d. Ensembles which represent closed systems in equilibrium 85

e. Ensembles which represent open systems in equilibrium 87

2. Description of Statistical Ensembles in Quantum Mechanics *

a. Quantum mechanical treatment of single systems 88

b. Definition of the probability density matrix 89

c. The physical significance of the density matrix 91

d. Other probability densities 92

e. Time-dependence of density matrix; equilibrium ensembles for
closed systems 93

f. Equilibrium ensembles for open systems 94

3. The Basis of Statistical Mechanics 94

a. Justification of the microcanonical ensemble 95

b. The distribution of energy among macroscopic subsystems 95

c. Ensemble averages and fluctuations 98

d. The distribution of energy among molecules in a gas 100

e. Justification for the use of the canonical ensemble 101

f. Calculation of ensemble averages 103

4. The Fundamentals of Statistical Thermodynamics 105

a. The partition function 105

b. The internal energy and the first law of thermodynamics 106

c. Temperature and entropy and the second law of thermodynamics 107

d. Entropy at absolute zero and the third law of thermodynamics 109

e. The thermodynamic properties in terms of the partition function 110

5. The Evaluation of the Thermodynamic Properties of Ideal Gases 111

a. The partition function for the ideal gas 111

b. Distribution of energy among the molecules of an ideal gas 112

c. Contributions to the thermodynamic properties 114

d. Ideal gas mixtures 120

6. The Theory of Fluctuations 121

a. Fluctuations in the density in terms of the thermodynamic properties 122

b. Fluctuations in the density in terms of the radial distribution function 127

Chapter 3. The Equation of State of Gases at Low and Moderate
Densities

(In collaboration with Dr. Ellen L. Spotz, University of Wisconsin)

1. Development of the Equation of State from Statistical Mechanics 132

a. The method of the partition function 133

b. The method based on the virial theorem of mechanics 134

c. Equivalence of the partition function and the virial theorem
methods 136

2. The Virial Equation of State from the Partition Function 137

a. The “U-functions” 137

b. The cluster integrals, b_1 139

c. Evaluation of the partition function 141

d. The equation of state in the virial form 144

3. The Virial Equation of State from the Virial Theorem 145

a. The “modified U-functions” 145

b. The “modified cluster integrals” 146

c. The pair distribution function in terms of the density 146

d. The equation of state in the virial form 147

* This section was written with the assistance of Professor J. de Boer, University of Amsterdam, The Netherlands.
CONTENTS

4. The Virial Coefficients 148
 a. The assumption of additivity 148
 b. The virial coefficients for angle-independent potentials 150
 c. The virial coefficients for angle-dependent potentials 151
 d. The virial coefficients for mixtures 153
 e. The determination of virial coefficients from equation of state data 154

5. Virial Coefficients for Simple Angle-Independent Potentials 156
 a. Rigid spheres 156
 b. Point centers of repulsion 157
 c. The Sutherland model 158
 d. The square-well potential 158

6. The Virial Coefficients for the Lennard-Jones (6-12) Potential 162
 a. Calculation of the second virial coefficient 162
 b. Determination of intermolecular forces from second virial coefficients 166
 c. Evaluation of the third virial coefficient 170
 d. The Joule-Thomson coefficient 173

7. The Second Virial Coefficient for More Elaborate Potentials 178
 a. The Buckingham-Corner potential 178
 b. The modified Buckingham (6-exp) potential 180

8. The Second Virial Coefficient for Non-spherical Molecules 183
 a. Isihara's treatment of rigid convex molecules 183
 b. Kihara's generalized spherico-cylindrical molecules 187
 c. Kihara's generalized ellipsoidal molecules 190
 d. Corner's four-center model for long molecules 193

9. Discussion of the Results for Several Non-polar Potential Functions 196
 a. Spherical molecules 196
 b. Non-spherical molecules 205
 c. Comparison of different types of potential energy functions 206

10. The Virial Coefficients for Polar Gases * 209
 a. Rigid spheres with imbedded point-dipoles 210
 b. The second virial coefficient for the Stockmayer potential 211
 c. Determination of the parameters in the Stockmayer potential 215
 d. Joule-Thomson coefficients for the Stockmayer potential 217
 e. The third virial coefficient for the Stockmayer potential 220
 f. Calculations for mixtures 222
 g. Dipole-quadrupole interactions in complex molecules 225

Appendix A. Kihara's Evaluation of the Third Virial Coefficient 228
Appendix B. Thermodynamic Properties in Terms of Virial Coefficients 230

CHAPTER 4. THE EQUATION OF STATE OF DENSE GASES AND LIQUIDS 234

1. The Principle of Corresponding States 235
 a. The empirical principle of corresponding states 235
 b. The Hougen and Watson generalized charts 239
 c. The principle of corresponding states for spherical non-polar gases 244
 d. The principle of corresponding states for polyatomic molecules 247
 e. The principle of corresponding states for polar molecules 248

2. Empirical Equations of State 250
 a. Two-constant equations of state 250
 b. The Beattie-Bridgeman equation of state 253

* This section was prepared with the assistance of Professor J. S. Rowlinson, Dept. of Chemical Eng., Imperial College, University of London.
CONTENTS

c. The Benedict-Webb-Rubin equation of state 258
d. Empirical relations for liquids 261

3. Gases at Very High Pressures 262
 a. An equation of state for powder gases 262
 b. Equation of state behavior in detonations 263
 c. Use of the virial theorem to study distortion of molecules 264
 d. Quantum mechanical treatment of the distortion of molecules 268
 e. Optical and electrical methods for studying the distortion of molecules 271

4. Some General Considerations about the Cell Methods 271
 a. Crystal structure as the basis for cell methods 272
 b. The concept of communal entropy 273
 c. The concept of free volume 276

5. A Simple Cell Model for Liquids and Dense Gases 279
 a. Approximate expressions for the free volume and the lattice energy 279
 b. The Eyring equation of state 281
 c. The vapor pressure: Hildebrand's rule and Trouton's rule 283
 d. Heat capacities 284
 e. The entropy change on melting 285

6. The Equation of State for Rigid Non-attracting Spheres 286
 a. The exact and "smeared" free volume 286
 b. The equation of state at low density: hard and soft center free volumes 290

7. The Equation of State of Lennard-Jones and Devonshire 293
 a. Development of the equation of state 294
 b. The three-shell modification 296
 c. Comparison with experimental results 303
 d. The double-occupancy modification 305

8. Hole Theories of Liquids and Dense Gases 311
 a. General theory of holes in liquids 311
 b. The linear approximation for the logarithm of the free volume 313
 c. Comparison of hole theory calculations with experiment 316

9. The Equation of State in Terms of the Pair Distribution Function 320
 a. Behavior of the pair distribution function 321
 b. The "potential of the average force" 324
 c. Derivation of integral equations for the pair distribution function 325
 d. Solution of the integral equation: the superposition approximation 328

CHAPTER 5. VAPOR-LIQUID EQUILIBRIA AND CRITICAL PHENOMENA*

1. The Interfacial Region between a Liquid and a Vapor 337
 a. Definition of surface tension 337
 b. Surface tension from free-volume methods 342
 c. Surface tension from the radial distribution function 347
 d. Effect of radius of curvature on surface tension 348
 e. First-order calculations of surface tension 352
 f. Macleod's equation and the parachor 354

2. Phase Behavior of One-Component Systems 357
 a. Methods of determining the critical point 357
 b. Stable and metastable states 363

* This chapter was prepared with the assistance of Dr. C. A. Boyd, Aero Projects, Inc., West Chester, Pa.
CONTENTS

2. The Equations of Change
a. Molecular velocities and stream velocities 453
b. The flux vectors 455
c. The geometric equations of change 459
d. Vanishing of the collision integrals for the summational invariants 460
e. Explicit expressions for the equations of change 461

3. Enskog's Solution of the Boltzmann Equation
a. The H-theorem (the equilibrium solution) 464
b. The Enskog series 466
c. The first-order perturbation solution 468
d. The integral equations 469
e. Several important integral theorems 472
f. Establishment of a variational principle 474
g. Application of the variational principle (the Sonine polynomial expansion) 475

4. The Formulation of the Transport Coefficients
a. Coefficients of diffusion and thermal diffusion 478
b. Coefficient of viscosity 480
c. Coefficient of thermal conductivity 481
d. The integrals $\Omega^{(1,8)}$ 484
e. Explicit formulae for the transport coefficients in terms of the $\Omega^{(1,8)}$ 485

5. Grad's Solution of the Boltzmann Equation
a. The moment equations 492
b. The “thirteen-moment” approximation 494

6. Effects of Chemical Reactions and Internal Degrees of Freedom
a. The equations of change for a reacting gas mixture 496
b. The effect of internal degrees of freedom (the Eucken correction) 498
c. The formal kinetic theory of polyatomic molecules 501
d. Several special models (rigid ovaloids, rough spheres, loaded spheres) 506

Appendix A. Bracket Expressions in Terms of the $\Omega^{(1,8)}$ 511

Chapter 8. Transport Phenomena of Dilute Gases
(In collaboration with Dr. Ellen L. Spotz, University of Wisconsin)

1. The Flux Vectors and the Transport Coefficients 515
a. Mass transfer and the diffusion coefficients 516
b. Momentum transfer and the viscosity coefficients 521
c. Energy transfer and the thermal conductivity coefficient 522

2. Summary of Kinetic Theory Formulae for Pure Gases and Mixtures 523
a. The quantities $\Omega^{(1,8)}$ 523
b. The coefficient of viscosity 528
c. The coefficient of thermal conductivity 533
d. The coefficient of diffusion 538
e. The coefficient of thermal diffusion 541

3. Transport Coefficients for Simple Potentials 543
a. Rigid elastic spheres 544
b. Point centers of repulsion 546
c. The Sutherland model 549
d. The square-well potential 551
CONTENTS

4. Transport Coefficients for the Lennard-Jones (6-12) Potential 552
 a. The dynamics of a collision: calculation of cross-sections 553
 b. The coefficient of viscosity of pure gases 560
 c. The coefficient of viscosity of mixtures 566
 d. The coefficient of thermal conductivity 573
 e. The coefficient of diffusion 578
 f. The thermal diffusion ratio 582

5. Comparison of Several Spherical Non-polar Potential Functions 589

6. Transport Coefficients for Polar Gases and Gas Mixtures 597
 a. Viscosity of pure gases 597
 b. Viscosity and diffusion for mixtures containing one polar component 600

Appendix A. Higher Approximations to the Transport Coefficients 604

CHAPTER 9. THE TRANSPORT PROPERTIES OF DENSE GASES AND LIQUIDS 611

1. The Principle of Corresponding States 613
 a. Experimental observations of the transport properties at high densities 613
 b. A principle of corresponding states for spherical non-polar molecules 617
 c. Applications of the principle of corresponding states 619
 d. The principle of corresponding states for polar molecules 622

2. The Eyring Theory of Transport Phenomena 624
 a. The coefficient of viscosity 625
 b. The coefficient of diffusion 631
 c. The coefficient of thermal conductivity 633

3. The Enskog Theory of Transport Phenomena 634
 a. The Boltzmann equation as modified for a dense gas 636
 b. The flux vectors 638
 c. The equations of change 640
 d. The solution of the modified Boltzmann equation 642
 e. The transport coefficients 643
 f. Summary of results for rigid spheres 647
 g. Application of results to real gases 649

4. The Transport Properties from Statistical Mechanics 652
 a. The Liouville equation and the general equation of change 653
 b. The macroscopic variables 654
 c. The macroscopic variables in terms of lower-order distribution functions 655
 d. The flux vectors and the equations of change 657
 e. Calculation of the transport coefficients 659

Appendix A. The Eyring Theory of Reaction Rates 661

CHAPTER 10. QUANTUM THEORY AND TRANSPORT PHENOMENA 668

(By J. de Boer and R. Byron Bird)

1. Non-equilibrium Quantum Statistical Mechanics 669
 a. General statistical mechanical theory 669
 b. The Boltzmann equation for dilute gas mixture 671

2. Transport Phenomena at Very Low Temperatures 674
 a. The diffraction effects 675
 b. The symmetry effects 677
 c. Calculations at very low temperatures 680

3. Transport Phenomena at Intermediate Temperatures 684
 a. The WKB development of the phase shifts 685
CONTENTS

b. The cross-sections as power series in Planck's constant 687
c. Calculations for an inverse twelfth-power repulsive potential 690
4. The Principle of Corresponding States in Quantum Mechanics 692

CHAPTER 11. HYDRODYNAMIC APPLICATIONS OF THE EQUATIONS OF CHANGE 694

1. The Hydrodynamic Equations 695
a. Applicability of the equations of change 695
b. Summary of the equations of change 698
c. The equation of change of entropy 700
2. The Thermodynamics of Irreversible Processes 704
a. The Onsager reciprocal relations 705
b. Application to the transport phenomena 708
c. Application to momentum transport 710
d. Application to mass and energy transport 712
e. Summary of results 717
3. Energy Transfer by Radiation 720
a. Radiation flux for two special cases 723
b. Stationary radiation front 726
4. The Theory of Sound Propagation 728
a. Propagation without absorption 728
b. Propagation with absorption 730
5. The Propagation of Finite Waves in One Dimension 736
a. The Riemann method of characteristics 736
b. Application of the method of characteristics to a perfect gas 740
c. The formation of shock waves in a perfect gas 742
6. One-Dimensional Steady-State Equations of Change 746
a. The basic equations for a system under general conditions 747
b. The basic equations for a system near equilibrium 751
7. The Theory of Flame Propagation 756
a. Qualitative discussion of the Bunsen burner flame 757
b. The theory of steady-state one-dimensional flame propagation 761
c. Simple example of a flame (unimolecular reversible reaction) 766
d. Simple example of a flame: kinetic energy and diffusion neglected 770
e. Simple example of a flame: kinetic energy neglected but not diffusion 775
f. Simple example of a flame: diffusion neglected but not kinetic energy 780
8. The Theory of Shock Wave Propagation 783
a. The Hugoniot relations 785
b. Application of the Hugoniot relations to a perfect gas 786
c. The structure and thickness of a shock wave in a perfect gas 791
9. The Theory of Detonations 797
a. The Hugoniot relations and the Chapman-Jouguet condition 797
b. Applications of the theory of detonations to perfect gases 803
c. The structure of a detonation wave 807
10. The Flow of Propellant Gases in Rockets 814
a. The equations of change 815
b. Applications to a perfect gas 818
c. The thermochemistry of real gas mixtures 821
d. The flow of a real gas through a nozzle 825
PART III. INTERMOLECULAR FORCES

CHAPTER 12. ELECTROMAGNETIC BASIS OF INTERMOLECULAR FORCES 835

1. Electrostatics 836
 a. Coulombic interaction between charges and charge distribution 836
 b. The electrostatic potential and the electric field intensity 838
 c. Multipole moments 839
 d. The "one-center" expansion 841
 e. The "two-center" expansion 843
 f. Behavior of electric dipoles 846

2. Polarization of Matter and the Electric Susceptibility 851
 a. Polarizability and polarization 852
 b. The D and E fields 853
 c. The local field, E_{loc} 855
 d. Electric susceptibility in terms of the dielectric constant 857
 e. The electric susceptibility in terms of the molecular properties 859

3. Maxwell's Equations of Electromagnetism 862
 a. Maxwell's equations in a vacuum 863
 b. The scalar and vector potentials; magnetic multipoles 865
 c. The magnetization of matter 867
 d. Maxwell's equations for a material medium 869

4. Magnetization of Matter and the Magnetic Susceptibility 871
 a. The \mathcal{H} and \mathcal{B} fields 871
 b. The local field \mathcal{B}_{loc} 874
 c. The magnetic susceptibility in terms of the magnetic permeability 875

5. Classical Theory of Light Absorption and the Index of Refraction 877
 a. The oscillating dipole (the Hertzian oscillator) 878
 b. The equation of motion of charged particles 880
 c. The index of refraction (Drude's theory) 881

6. Quantum Theory of Light Absorption and the Index of Refraction 883
 a. Transition probabilities for a molecule in an electromagnetic field 883
 b. Induced absorption and emission of light 885
 c. The index of refraction 888

7. Scattering of Electromagnetic Waves 891
 a. Scattering of visible light 894
 b. Scattering of x-rays 898

Appendix A. The Two-Center Expansion Coefficients 900

Appendix B. The Representation Coefficients of the Three-Dimensional Rotation Group 905

Appendix C. Matrix Components of the Dipole Moment for Optical Transitions 912

CHAPTER 13. THE THEORY OF INTERMOLECULAR FORCES 916

1. Intermolecular Potential Energy Functions 919
 a. The concept of an intermolecular potential energy function 919
 b. Separation of electronic and nuclear motions (Born-Oppenheimer separation) 925
 c. Information about intermolecular potentials from the virial theorem 930
 d. Equivalence of classical and quantum mechanical intermolecular forces 932
e. Quantum mechanical calculation of the intermolecular potential energy
2. The Polarizability of Molecules
 a. Variational method for the calculation of polarizabilities
 b. The polarizability of molecular hydrogen
 c. The additivity of bond polarizabilities
 d. Polarizability and other properties of atoms from screening constants
3. The London Dispersion Forces between Symmetrical Molecules
 a. A simplified theory of dispersion forces based upon the Drude model
 b. Second-order perturbation treatment of dispersion forces
 c. Higher terms in the expression for the dispersion energy
 d. The influence of "retardation" on the dispersion forces at large distances
4. Dispersion Forces between Asymmetric Molecules
 a. Dispersion forces between asymmetric molecules at large separations
 b. Dispersion forces between asymmetric molecules at intermediate separations
 c. Energy of dispersion between long conjugated double-bond molecules
5. Forces between Molecules Having Permanent Electric Moments
 a. The energy of induction
 b. The potential energy of interaction averaged over orientations
 c. The relative magnitude of the contributions to the intermolecular potential
 d. Hydrogen bonds as electrostatic forces
6. Quantum Treatment of Resonance and Electrostatic Forces
 a. The nature of resonance forces
 b. Quantum interaction of two ideal dipoles in linear molecules
 c. Quantum interaction between two ideal dipoles in symmetrical tops
 d. Long-range interactions between a proton and a hydrogen or helium atom
 e. Quadrupole-quadrupole forces between atoms not in S-states
7. Intermolecular Forces from Microwave Spectra
 a. The broadening of lines in microwave spectra
 b. Information about long-range forces from pressure broadening
8. Determination of the Quadrupole Moment of the Water Molecule
 a. Theoretical determination
 b. Empirical determination
9. Intermolecular Forces from Properties of Crystals
 a. The potential energy of the crystal lattice
 b. The zero-point energy of the crystal lattice
 c. Determination of the forces between noble gas atoms
Appendix A. Complete Hamiltonian for a System in External Electric and Magnetic Fields
Appendix B. The Ratio of Kinetic to Potential Energy of Electrons in a Molecular System
Chapter 14. Quantum Mechanical Calculations of Intermolecular Forces
1. The Interaction between Two Hydrogen Atoms
 a. The 1Σ state corresponding to the normal H_2 molecule
 b. The 3Σ state corresponding to repulsion of two $1s$ hydrogen atoms
2. The Energy of Interaction between Noble Gas Atoms
 a. Interaction of two helium atoms
<table>
<thead>
<tr>
<th>CONTENTS</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>b. Interaction of two neon atoms</td>
<td>1070</td>
</tr>
<tr>
<td>c. Interaction of two argon atoms</td>
<td>1073</td>
</tr>
<tr>
<td>3. Interaction of a Hydrogen Atom with a Hydrogen Molecule</td>
<td>1075</td>
</tr>
<tr>
<td>a. Eyring semi-empirical method</td>
<td>1076</td>
</tr>
<tr>
<td>b. Direct first-order perturbation and dispersion energy calculation</td>
<td>1080</td>
</tr>
<tr>
<td>4. Interaction between Two Hydrogen Molecules</td>
<td>1083</td>
</tr>
<tr>
<td>a. The chemical or valence energy</td>
<td>1083</td>
</tr>
<tr>
<td>b. The long-range energy of interaction</td>
<td>1086</td>
</tr>
<tr>
<td>c. The total interaction energy and comparison with experiment</td>
<td>1090</td>
</tr>
<tr>
<td>5. Interaction of H and H₂ with Various Hydrogen Ions</td>
<td>1092</td>
</tr>
<tr>
<td>a. The interaction H + H⁺</td>
<td>1092</td>
</tr>
<tr>
<td>b. The interaction H + H⁻</td>
<td>1094</td>
</tr>
<tr>
<td>c. The interactions H + H₂⁺ , H₂ + H⁺ , and H₂ + H₂⁺</td>
<td>1095</td>
</tr>
<tr>
<td>d. The interaction H₂ + H⁻</td>
<td>1096</td>
</tr>
<tr>
<td>e. Cluster of ions</td>
<td>1097</td>
</tr>
<tr>
<td>6. Interaction of He with an Excited He Atom or a Proton</td>
<td>1098</td>
</tr>
<tr>
<td>a. The interaction of a normal and a metastable helium atom</td>
<td>1098</td>
</tr>
<tr>
<td>b. The interaction of a normal helium atom with a proton</td>
<td>1102</td>
</tr>
<tr>
<td>Appendix A. Integrals Useful in the Calculation of Intermolecular Energies</td>
<td>1104</td>
</tr>
<tr>
<td>APPENDIX (TABLES)</td>
<td>1109</td>
</tr>
<tr>
<td>SYMBOLS AND NOTATION</td>
<td>1181</td>
</tr>
<tr>
<td>NOTES ADDED IN SECOND PRINTING (N)</td>
<td>1187</td>
</tr>
<tr>
<td>CHEMICAL INDEX</td>
<td>1217</td>
</tr>
<tr>
<td>AUTHOR INDEX</td>
<td>1219</td>
</tr>
<tr>
<td>SUBJECT INDEX</td>
<td>1229</td>
</tr>
</tbody>
</table>