Activation Spectrometry in Chemical Analysis

SUSAN J. PARRY

Imperial College Reactor Centre
Imperial College of Science, Technology and Medicine
University of London

A WILEY-INTERSCIENCE PUBLICATION
JOHN WILEY & SONS
New York / Chichester / Brisbane / Toronto / Singapore
CONTENTS

PRINCIPLES

<table>
<thead>
<tr>
<th>CHAPTER 1</th>
<th>WHAT IS ACTIVATION SPECTROMETRY?</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>References</td>
<td></td>
<td>7</td>
</tr>
</tbody>
</table>

NEUTRON ACTIVATION

<table>
<thead>
<tr>
<th>CHAPTER 2</th>
<th>NEUTRON ACTIVATION</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nuclear reactions</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Activation with neutrons</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Cross section</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Decay rate</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Induced activity</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Nuclear interferences</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>References</td>
<td>19</td>
<td></td>
</tr>
</tbody>
</table>

IRRADIATION FACILITIES

<table>
<thead>
<tr>
<th>CHAPTER 3</th>
<th>IRRADIATION FACILITIES</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nuclear reactors</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Irradiation containers</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>Irradiation devices</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>Epithermal neutron activation</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Neutron flux distribution</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>Other neutron sources</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>References</td>
<td>38</td>
<td></td>
</tr>
</tbody>
</table>

GAMMA RAYS

<table>
<thead>
<tr>
<th>CHAPTER 4</th>
<th>GAMMA RAYS</th>
<th>39</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radioactive decay</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>Decay schemes</td>
<td>41</td>
<td></td>
</tr>
<tr>
<td>Branching ratios</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td>Detection of gamma rays</td>
<td>47</td>
<td></td>
</tr>
<tr>
<td>Semiconductor detectors</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>References</td>
<td>55</td>
<td></td>
</tr>
</tbody>
</table>
CHAPTER 5 SPECTROMETRY EQUIPMENT 56
Detector 56
Preamplifier 61
Spectroscopy amplifier 63
Pulse height analyzer 64
Gamma ray spectrum 66
Data processing 70
Automation 74
References 75

CHAPTER 6 ACTIVATION SPECTROMETRY 77
Nuclide identification 77
Peak evaluation 78
Efficiency correction 81
Quantitative determination of activity 84
“Absolute” activation analysis 85
Single comparator methods 86
Chemical standards 87
References 89

TECHNIQUES

CHAPTER 7 SAMPLE PREPARATION 90
Sample size 90
Sample geometry 92
Sample collection 94
Homogenization 96
Preconcentration 97
References 98

CHAPTER 8 IRRADIATION CONTAINERS 100
Shape and size 100
Material 102
Impurities 103
Effect on neutron flux 107
References 108
CHAPTER 9 PREPARATION OF STANDARDS 109
Single-element standards 109
Multielement standards 111
Flux monitors 113
Geometry 114
References 115

CHAPTER 10 REFERENCE MATERIALS 117
Choice of reference material 117
Geochemical reference samples 118
Biological reference materials 124
Environmental reference materials 127
Industrial reference materials 129
In-house reference materials 129
References 129

CHAPTER 11 IRRADIATION TECHNIQUES 131
Choice of irradiation conditions 131
Thermal neutron activation 132
Epithermal neutron activation 134
Fast neutron activation 138
Photon activation 139
Charged particle activation 141
Length of irradiation 143
References 146

CHAPTER 12 COUNTING TECHNIQUES 148
Choice of gamma ray energy 148
Choice of detector 149
Counting time 153
Cyclic activation analysis 154
Cumulative activation analysis 157
Delayed neutron counting 159
References 161

APPLICATIONS

CHAPTER 13 BIOMEDICAL APPLICATIONS 163
Blood and tissue 163
Stable tracers 167
Hair and nails 168
Bones 171
Urine and feces 171
In vivo analysis 172
Nutrition 174
References 177

CHAPTER 14 ENVIRONMENTAL APPLICATIONS 181

Air pollutants 181
Water 185
Vegetation 190
References 193

CHAPTER 15 GEOLOGICAL APPLICATIONS 196

Soils 196
Humus, mull and till 199
Sediments 200
Marble 202
Silicate rocks 202
Uranium ore 206
Gold ore 207
Platinum group minerals 208
Borehole logging 209
References 210

CHAPTER 16 INDUSTRIAL APPLICATIONS 213

Carbon and boron 213
Petroleum, oil and polymers 214
Pharmaceuticals and cosmetics 217
Coal and metalliferous ores 219
Metals and alloys 221
Semiconductor materials and glasses 225
Clays and ceramics 228
References 230

INDEX 235