THE THREE-BODY PROBLEM

CHRISTIAN MARCHAL
Office National d'Études et de Recherches Aérospatiales,
Châtiillon, France
CONTENTS

Foreword V
Dedication VII
Acknowledgments VIII
Short table of contents IX
Contents X

1. Summaries (English, French, Russian, German, Spanish, Japanese, Chinese, Arabic) 1
2. History 12
3. The law of universal attraction 14
4. Exact formulations of the three-body problem 15
 4.1. The classical formulation 15
 4.2. The Lagrangian formulation 17
 4.3. The Jacobi formulation 18
 4.4. The Hamilton and Delaunay formulation 19
5. The invariants in the three-body problem 21
 5.1. The ten classical integrals and the Lagrange-Jacobi identity 21
 5.1.1. The integral of the center of mass 21
 5.1.2. The integral of angular momentum 21
 5.1.3. The integral of the energy 22
 5.1.4. The Lagrange-Jacobi identity 23
 5.2. The unsuccessful researches of new integrals 24
 5.3. The scale transformation, the variational three-body problem and the eleventh "local integral" 25
 5.4. The integral invariants 29
7. Final simplifications, the elimination of nodes, the elimination of time. 36
8. Simple solutions of the three-body problem 41
 8.1. The Lagrangian and Eulerian solutions. The central configurations 41
8.2 Stability of Eulerian and Lagrangian motions
 8.2.1 First-order analysis
 8.2.2 Complete analysis of stability
8.3 The Eulerian and Lagrangian motions in nature and in astronautics
8.4 Other exact solutions of the three-body problem
 8.4.1 The isoceles solutions
 8.4.2 The z-axis Hill solutions
8.5 Other simple solutions of the three-body problem
9 The restricted three-body problem
 9.1 The circular restricted three-body problem
 9.2 The Hill problem
 9.2.1 The Brown series
 9.2.2 The lunar motion within 1000 km
 9.3 The elliptic, parabolic and hyperbolic restricted three-body problems
 9.4 The Copenhagen problem and the computations of Michel Hénon
10 The general three-body problem. Quantitative analysis
 10.1 The analytical methods
 10.2 An example of the Von Zeipel method. Integration of the three-body problem to the first order
 10.2.1 Principle of the method of Von Zeipel
 10.2.2 Application of the method of Von Zeipel to the three-body problem
 10.2.3 First-order integration of the three-body problem
 10.2.4 A concrete picture of the wide perturbations of the three-body problem
 10.2.5 General considerations on the first-order integration
 10.3 Integration of the three-body problem to the second order
 10.4 The numerical methods
 10.4.1 A three-body motion of the exchange type
 10.4.2 An oscillatory motion of the second kind
 10.4.3 Studies of gravitational scattering
 10.5 Periodic orbits and numerical methods
 10.5.1 Computation of periodic orbits. The method of analytic continuation. The utmost reduction of the three-body problem and the elimination of
trivial side-effects

10.5.2. The method of analytic continuation for three given masses
10.5.3. The method of analytic continuation and the modification of masses

10.6. Periodic orbits and symmetry properties
10.6.1. The four types of space-time symmetries
10.6.2. Families of symmetric periodic orbits

10.7. The vicinity and the stability of periodic orbits
10.7.1. Definition and generalities
10.7.2. The evolution of ignorable parameters. The orbital stability. The "in plane" stability
10.7.3. The first-order analysis
10.7.4. Simple cases of the first-order analysis
10.7.4.1. Rectilinear periodic orbits
10.7.4.2. Plane periodic orbits
10.7.4.3. Symmetric periodic orbits
10.7.4.4. Circular restricted case and Hill case
10.7.5. First-order stability, the general discussion
10.7.6. On the evolution of first-order stability along the families of periodic orbits
10.7.7. Elements of the all-order stability analysis.
 The near-resonance theorem
 10.7.7.1. Analytic autonomous differential systems.
 The vicinity of a point of equilibrium
 10.7.7.2. Analytic differential systems. The vicinity of a periodic solution
 10.7.7.3. Motions in the central subset. Motions in the critical case. The critical Hamiltonian case
 10.7.7.4. Critical Hamiltonian case. The Nth-order study. The quasi-integrals. Generalization of "Birkhoff differential rotations"
 10.7.7.5. The six main types of stability and instability
 10.7.7.6. A lower bound of m for a "power-m instability"
10.7.8. Two conjectures on the stability or instability of periodic solutions of analytic Hamiltonian systems
10.7.9. On the cases with multiple Floquet multipliers or multiple eigenvalues 221

10.7.10. Example. The all-order stability of Lagrangian motions 222

10.7.10.1. The first order study 224

10.7.10.2. The second simplification 225

10.7.10.3. The quasi-integrals I_N 227

10.7.10.4. Extension to the circular Lagrangian motions of the general three-body problem 231

10.7.10.5. The second-order study 237

10.7.10.6. The third-order study 245

10.8. The series of some simple solutions of the three-body problem 248

10.8.1. The pseudo-circular orbits 249

10.8.2. A family of periodic orbits with the largest number of symmetries 251

10.8.3. The Halo orbits about the collinear Lagrangian points 257

10.9. Examples of numerical integrations 277

10.9.1. Researches by continuity

The retrograde pseudo-circular orbits of the three-body problem with three equal masses 277

10.9.2. A numerical experiment. The Pythagorean problem 284

10.9.3. The method of numerical exploration. Encounters of satellites 291

11. The general three-body problem. Qualitative analysis and qualitative methods 301

11.1. The prototype of qualitative methods 301

11.2. The trivial transformations and the corresponding symmetries among n-body orbits 302

11.2.1. The space-time symmetries 305

11.2.2. The space symmetries 309

11.2.3. The remaining symmetries 310

11.2.4. Multi-symmetries 311

11.3. Other early qualitative researches 311

11.3.1. The Eulerian and Lagrangian solutions. The central configurations 311

11.3.2. The research of new integrals of motion 316

11.4. Periodic orbits. The method of Poincaré 317
11.4.1. The three first species of Poincaré periodic orbits

11.4.2. The Poincaré conjecture

11.5. Unsymmetrical periodic orbits. The Brown conjecture

11.6. The Hill stability and its generalization

11.6.1. The "generalized semi-major axis", the "generalized semi-latus rectum", the "mean quadratic distance", the "mean harmonic distance" and the Sundman function

11.6.2. The classical relations and the new notation

11.6.3. Hill-type stability in the general three-body problem

11.6.4. Scale effects

11.6.5. Hill-type stability for systems with positive or zero energy integral

11.7. Final evolutions and tests of escape

11.7.1. The new notations and the n-body problem

11.7.2. The classical results and the new notations

11.7.3. Improvements - (Three and n-body motions)

11.7.3.1. Limitations on the configuration, the scale, the orientation

11.7.3.2. On the evolution of the semi-moment of inertia I and the mean quadratic distance p

11.7.3.3. On the evolution of the potential U and the mean harmonic distance v

11.7.3.4. A psychological improvement, the use of r and R instead of p and v

11.7.4. The principle of the tests of escape

11.7.5. Example of the construction of a test of escape for the n-body problem

11.7.5.1. Simplification of the problem

11.7.5.2. Research of long-term valid results

11.7.5.3. Improvement of the efficiency of the test. Extension to the general n-body problem

11.7.6. Final evolution: the singularities

11.7.6.1. The two types of singularity of the n-body problem

11.7.6.2. Impossibility of the "infinite expansion
in a bounded interval of time" for three-body motions 385

11.7.6.3. Analysis of a collision 387
11.7.6.4. Collisions and central configurations 390
11.7.6.5. On the regularization of singularities 396

11.7.7. Final evolutions. The Chazy classification of three-body motions 398

11.7.7.1. Relations among the lengths λ. The limits of the vectors \(\overrightarrow{r}/t \) 401
11.7.7.2. The hyperbolic final evolution 403
11.7.7.3. The hyperbolic-parabolic and the hyperbolic-elliptic final evolutions 404
11.7.7.4. The tri-parabolic final evolution 406
11.7.7.5. The parabolic-elliptic final evolution 408
11.7.7.6. The bounded evolution, the two oscillatory evolutions and the collisions of stars 410

11.7.8. Sitnikov motions and oscillatory evolutions of the first kind 419

11.7.9. General table of final evolutions 424
11.7.10. Progress in the tests of escape 428

11.7.10.1. Classification of tests 429
11.7.10.2. The ergodic theorem. The difficulty of a test of bounded motions 432
11.7.10.3. A test of escape valid even for very small mutual distances 436
11.7.10.4. An application of the very efficient test. Analysis in the \((\mathbf{p}, \mathbf{p'})\) half-plane 454
11.7.10.5. A survey of recent progress in tests of escape. Analysis of triple close approaches 483

11.8. n-body motions and complete collapses. An extension of the Sundman three-body result 489

11.9. Original and final evolutions 493

11.9.1. General three-body systems of positive energy and non-zero angular momentum 494
11.9.2. General three-body systems of positive energy and zero angular momentum 495
11.9.3. General three-body systems of zero energy and non-zero angular momentum 496
11.9.4. General three-body systems of zero energy and
zero angular momentum

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.9.5.</td>
<td>General three-body systems of negative energy and non-zero angular momentum</td>
<td>497</td>
</tr>
<tr>
<td>11.9.6.</td>
<td>Remaining cases. Restricted cases</td>
<td>499</td>
</tr>
<tr>
<td>11.10.</td>
<td>On the Kolmogorov-Arnold-Moser theorem</td>
<td>506</td>
</tr>
<tr>
<td>11.11.</td>
<td>The Arnold diffusion conjecture. The temporary chaotic motions.</td>
<td>507</td>
</tr>
<tr>
<td></td>
<td>The temporary capture</td>
<td>509</td>
</tr>
<tr>
<td>11.12.</td>
<td>An application of qualitative methods. The controversy between Mrs Kazimirchak-Polonskaya and Mr R. Dvorak</td>
<td>513</td>
</tr>
<tr>
<td>11.13.</td>
<td>The Lagrangian and the qualitative methods</td>
<td>517</td>
</tr>
<tr>
<td>12.</td>
<td>Main conjectures and further investigations</td>
<td>519</td>
</tr>
<tr>
<td></td>
<td>Conclusions</td>
<td>523</td>
</tr>
<tr>
<td></td>
<td>Appendices</td>
<td>527</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>547</td>
</tr>
<tr>
<td></td>
<td>Bibliography</td>
<td>563</td>
</tr>
<tr>
<td></td>
<td>Subject index</td>
<td>566</td>
</tr>
<tr>
<td></td>
<td>Author index</td>
<td>570</td>
</tr>
</tbody>
</table>