Contents

CHAPTER 1
Introduction

1.1 Problem Definition 1
1.2 Example Systems for Study 5
1.3 Overview of Design Approach 7
1.4 Computer-Aided Design 9
1.5 Summary 10
1.6 Suggestions for Further Reading 10

Problems and Exercises 11

CHAPTER 2
Linear, Discrete, Dynamic-Systems Analysis: The z-Transform

2.1 Introduction 13
2.2 Linear Difference Equations 13
2.3 The Discrete Transfer Function 19
 - 2.3.1 The z-Transform 19
 - 2.3.2 The Transfer Function 20
 - 2.3.3 Block Diagrams and State-Variable Descriptions 23
 - 2.3.4 Relation of Transfer Function to Pulse Response 30
 - 2.3.5 External Stability and Jury's Test 35
2.4 Discrete Models of Sampled-Data Systems 41
 - 2.4.1 Using the z-Transform 41
 - 2.4.2 Continuous Time Delay 44
 - 2.4.3 State-Space Form 46
 - 2.4.4 State-Space Models for Systems with Delay 56
 - 2.4.5 Numerical Considerations in Computing Φ and Γ 61

Problems and Exercises 11
CONTENTS

2.5 Signal Analysis and Dynamic Response 64
 2.5.1 The Unit Pulse 65
 2.5.2 The Unit Step 65
 2.5.3 Exponential 66
 2.5.4 General Sinusoid 67
 2.5.5 Correspondence with Continuous Signals 71
 2.5.6 Step Response 73
2.6 Frequency Response 77
2.7 Properties of the z-Transform 82
 2.7.1 z-Transform Properties 82
 2.7.2 Another Derivation of the Transfer Function 92
2.8 Summary 95
 Problems and Exercises 95

CHAPTER 3
Sampled-Data Systems 101
3.1 Introduction 101
3.2 Analysis of the Sample and Hold 102
3.3 Spectrum of a Sampled Signal and Aliasing 107
3.4 Data Extrapolation and Impostors 112
3.5 Block-Diagram Analysis 121
3.6 Summary 130
 Problems and Exercises 130

CHAPTER 4
Discrete Equivalents to Continuous Transfer Functions: The Digital Filter 133
4.1 Introduction 133
4.2 Design of Discrete Equivalents by Numerical Integration 135
4.3 Zero-Pole Mapping Equivalents 147
4.4 Hold Equivalents 149
 4.4.1 Zero-Order Hold Equivalent 149
 4.4.2 Triangle Hold Equivalent 151
4.5 Summary 155
 Problems and Exercises 156

CHAPTER 5
Design of Digital Control Systems Using Transform Techniques 158
5.1 Introduction 158
5.2 Control System Specifications 159
5.3 Design Using Emulation 174
CONTENTS xvii

5.4 z-Plane Design Using Root Locus 183
5.5 Frequency-Response Methods with the z-Transform 193
 5.5.1 Gain and Phase Plotting 194
 5.5.2 Nyquist Stability 197
 5.5.3 Low-Frequency Gains and Error Coefficients 203
 5.5.4 Compensator Design 205
5.6 Frequency-Response Methods with the \(\omega \)-Transform 210
5.7 Direct Design Method of Ragazzini 216
5.8 PID Control 222
 5.8.1 Proportional Control 223
 5.8.2 Derivative Control 223
 5.8.3 Integral Control 224
 5.8.4 PID Control 224
 5.8.5 Ziegler-Nichols PID Tuning 224
5.9 Summary 229

Problems and Exercises 230

CHAPTER 6
Design of Digital Control Systems Using State-Space Methods 238
6.1 Introduction 238
6.2 Control-Law Design 239
 6.2.1 Pole Placement 241
 6.2.2 Controllability 244
 6.2.3 Ackermann's Formula 245
6.3 Estimator Design 250
 6.3.1 Prediction Estimators 251
 6.3.2 Observability 255
 6.3.3 Ackermann's Formula 255
 6.3.4 Current Estimators 256
 6.3.5 Reduced-Order Estimators 261
6.4 Regulator Design: Combined Control Law and Estimator 264
 6.4.1 The Separation Principle 264
 6.4.2 Guidelines for Pole Placement 271
6.5 Introduction of the Reference Input 273
 6.5.1 Reference Inputs for Full-State Feedback 273
 6.5.2 Reference Inputs with Estimators: The State-Command Structure 278
 6.5.3 Effect of Reference Input on System Zeros 280
 6.5.4 Output Error Command 284
 6.5.5 A Comparison of the Estimator Structure and Classical Methods 287
6.6 Integral Control 289
 6.6.1 Integral Control by State Augmentation 289
 6.6.2 Bias Estimation 292
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.7</td>
<td>Pole Placement using Polynomials</td>
<td>295</td>
</tr>
<tr>
<td></td>
<td>6.7.1 Integral Control</td>
<td>297</td>
</tr>
<tr>
<td>6.8</td>
<td>Controllability and Observability</td>
<td>301</td>
</tr>
<tr>
<td>6.9</td>
<td>Summary</td>
<td>308</td>
</tr>
<tr>
<td></td>
<td>Appendix to Chapter 6</td>
<td>309</td>
</tr>
<tr>
<td></td>
<td>Problems and Exercises</td>
<td>315</td>
</tr>
<tr>
<td>7</td>
<td>Quantization Effects</td>
<td>322</td>
</tr>
<tr>
<td>7.1</td>
<td>Introduction</td>
<td>322</td>
</tr>
<tr>
<td>7.2</td>
<td>Analysis of Round-Off Error</td>
<td>322</td>
</tr>
<tr>
<td>7.3</td>
<td>Effects of Roundoff of Parameters</td>
<td>336</td>
</tr>
<tr>
<td>7.4</td>
<td>Limit Cycles and Dither</td>
<td>340</td>
</tr>
<tr>
<td>7.5</td>
<td>Summary</td>
<td>345</td>
</tr>
<tr>
<td></td>
<td>Problems and Exercises</td>
<td>345</td>
</tr>
<tr>
<td>8</td>
<td>System Identification</td>
<td>349</td>
</tr>
<tr>
<td>8.1</td>
<td>Introduction and Problem Definition</td>
<td>349</td>
</tr>
<tr>
<td>8.2</td>
<td>Identification of Nonparametric Models</td>
<td>353</td>
</tr>
<tr>
<td>8.3</td>
<td>Models for Parametric Identification</td>
<td>366</td>
</tr>
<tr>
<td>8.4</td>
<td>Least Squares</td>
<td>374</td>
</tr>
<tr>
<td>8.5</td>
<td>Recursive Least Squares</td>
<td>378</td>
</tr>
<tr>
<td>8.6</td>
<td>Stochastic Least Squares</td>
<td>383</td>
</tr>
<tr>
<td>8.7</td>
<td>Maximum Likelihood</td>
<td>395</td>
</tr>
<tr>
<td>8.8</td>
<td>Numerical Search for the Maximum-Likelihood Estimate</td>
<td>402</td>
</tr>
<tr>
<td>8.9</td>
<td>Summary</td>
<td>413</td>
</tr>
<tr>
<td></td>
<td>Problems and Exercises</td>
<td>413</td>
</tr>
<tr>
<td>9</td>
<td>Multivariable and Optimal Control</td>
<td>417</td>
</tr>
<tr>
<td>9.1</td>
<td>Introduction</td>
<td>417</td>
</tr>
<tr>
<td>9.2</td>
<td>Decoupling</td>
<td>418</td>
</tr>
<tr>
<td>9.3</td>
<td>Time-Varying Optimal Control</td>
<td>422</td>
</tr>
<tr>
<td>9.4</td>
<td>LQR Steady-State Optimal Control</td>
<td>430</td>
</tr>
<tr>
<td></td>
<td>9.4.1 Reciprocal Root Properties</td>
<td>432</td>
</tr>
<tr>
<td></td>
<td>9.4.2 Symmetric Root Locus</td>
<td>433</td>
</tr>
<tr>
<td></td>
<td>9.4.3 Eigenvector Decomposition</td>
<td>435</td>
</tr>
<tr>
<td></td>
<td>9.4.4 Cost Equivalents</td>
<td>439</td>
</tr>
<tr>
<td></td>
<td>9.4.5 Emulation by Equivalent Cost</td>
<td>441</td>
</tr>
</tbody>
</table>