Contents

PREFACE vii

1 ANALYTICAL BACKGROUND 1

1.1 Introduction 1
1.2 Linear, Time-invariant, Discrete Systems 2
1.3 The Calculus of Finite Differences 5
1.4 The z-transform 10
1.5 The Inverse Transformation 14
1.6 Discretization of a Continuous System 15
1.7 Properties of Discrete and Discretized Linear Systems 24
1.8 Converting Discrete Signals to a Continuous Control Signal 29
Appendix 1A Overview of Classical Sampled Data Theory 33
Exercises 36

2 DIGITAL CONTROL DESIGN VIA CONTINUOUS DESIGN 38

2.1 Introduction 38
2.2 Continuous Design and Discretization of the Compensation Network 39
2.3 Digital Filter Properties, Frequency Response, Aliasing 41
2.4 Methods of Discretization of Analog Filters 47
2.5 Comparison of the Various Discretization Methods 57
2.6 Design Example 64
Appendix 2A Design of Filters Using Lowpass Filter, Bilinear Transformation and Frequency Prewarping 68
Exercises 69

3 DISCRETE DESIGN OF DIGITAL CONTROL 70

3.1 Introduction 70
3.2 Analytical Design 71
3.3 Design on the z-plane 79
3.4 Design on the w-plane and the w'-plane 84
3.5 Compensation Design Using the Frequency Response on the w-plane 89
3.6 Example of w and w'-plane Design Method 96
Exercises 101

4 MULTIVARIABLE DIGITAL CONTROL, STATE SPACE APPROACH 104

4.1 Introduction 104
4.2 State Space Approach; Pole Placement, Observer Design 105
4.3 Observer Design 113
4.4 Optimal Control Based on Quadratic Synthesis 122
4.5 Optimal Filtering in the Presence of Noise 125
4.6 Model Following Methods 128
Exercises 132

5 MECHANIZATION OF CONTROL ALGORITHMS ON MICROCONTROLLERS 135

5.1 Introduction 135
5.2 Iterative Computation via Parallel, Direct, Canonical and Cascade Mechanization 135
5.3 Properties of Microcomputers 143
5.4 Stabilization of an Antenna Dish. Example of Microcontroller Design 148
Exercises 162
6 ANALYSIS OF THE IMPLEMENTATION OF THE NUMERICAL ALGORITHM 163

6.1 Introduction
6.2 Binary Arithmetic with a Finite Word Length, Types of Numerical Errors and Their Generation in Various Forms of Representation 164
6.3 Generation and Propagation of Quantization Noise Through the System 169
6.4 Coefficient Errors and Their Influence on the Dynamics of the Controller 179
6.5 Nonlinear Properties of the Controller Caused by Quantization, Deadband, Limit Cycle 183
6.6 Word Length in A/D Converters, Memory, Arithmetic Unit and A/D Converters 190
6.7 Design Example. Microprocessor Implementation of a Digital Autopilot 195
Exercises 214

7 SELECTION OF SAMPLING RATE 216

7.1 Introduction 216
7.2 Unmodelled States and Prefiltering of Unwanted Frequencies 217
7.3 The Time Response and the Response to an External Noise—Relation to the Sampling Rate 224
7.4 The Roughness of Control Caused by Sampling 229
7.5 Fidelity of the Response and Sampling Rate 234
7.6 Practical Selection of the Sampling Rate 236
Exercises 238

8 DESIGN EXAMPLE 1 239

8.1 Introduction 239
8.2 The Analog Scheme 239
8.3 Discrete Model of the System and an Estimation of the Required Computing Capability 242
8.4 The Computing System 248
Exercises 252