POWER ELECTRONICS: Converters, Applications, and Design

NED MOHAN
Department of Electrical Engineering
University of Minnesota
Minneapolis, Minnesota

TORE M. UNDELAND
Department of Electrical Engineering and Computer Science
Norwegian Institute of Technology
Trondheim, Norway

WILLIAM P. ROBBINS
Department of Electrical Engineering
University of Minnesota
Minneapolis, Minnesota
CONTENTS

PART 1 INTRODUCTION

Chapter 1 Power Electronic Systems

1-1 Introduction
1-2 Scope and Applications of Power Electronics
1-3 Classification of Power Electronic Converters
1-4 About the Text

Chapter 2 Overview of Power Semiconductor Switches

2-1 Introduction
2-2 Diodes
2-3 Thyristors
2-4 Desired Characteristics in Controllable Switches
2-5 Bipolar Junction Transistors (BJTs) and Monolithic Darlington (MDs)
2-6 Metal-Oxide-Semiconductor Field Effect Transistors (MOSFETs)
2-7 Gate-Turn-Off Thyristors (GTOs)
2-8 Insulated Gate Bipolar Transistors (IGBTs)
2-9 Comparison of Controllable Switches
2-10 Drive and Snubber Circuits
2-11 Justification for Using Idealized Device Characteristics
2-12 Summary
2-13 References
PART 2 GENERIC POWER ELECTRONIC CONVERTERS

Chapter 3 Line-Frequency Diode Rectifiers: 60 Hz ac → Uncontrolled dc

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-1</td>
<td>Introduction</td>
<td>25</td>
</tr>
<tr>
<td>3-2</td>
<td>Basic Rectifier Concepts</td>
<td>26</td>
</tr>
<tr>
<td>3-3</td>
<td>Single-Phase Diode Bridge Rectifiers</td>
<td>27</td>
</tr>
<tr>
<td>3-4</td>
<td>Voltage Doubler (Single-Phase) Rectifiers</td>
<td>33</td>
</tr>
<tr>
<td>3-5</td>
<td>Three-Phase Full-Bridge Rectifiers</td>
<td>33</td>
</tr>
<tr>
<td>3-6</td>
<td>Comparison of Single-Phase and Three-Phase Rectifiers</td>
<td>38</td>
</tr>
<tr>
<td>3-7</td>
<td>Inrush Current and Overvoltages at Turn-On</td>
<td>38</td>
</tr>
<tr>
<td>3-8</td>
<td>Concerns and Remedies for Input-Current Harmonics and Poor Power Factor</td>
<td>39</td>
</tr>
<tr>
<td>3-9</td>
<td>Summary</td>
<td>39</td>
</tr>
<tr>
<td>3-10</td>
<td>References</td>
<td>40</td>
</tr>
</tbody>
</table>

Chapter 4 Line-Frequency Phase-Controlled Rectifiers and Inverters: 60 Hz ac ↔ Controlled dc

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-1</td>
<td>Introduction</td>
<td>41</td>
</tr>
<tr>
<td>4-2</td>
<td>Control of Line-Frequency Controlled Rectifiers and Inverters</td>
<td>42</td>
</tr>
<tr>
<td>4-3</td>
<td>Three-Phase Converter Analysis with $L_s = 0$</td>
<td>45</td>
</tr>
<tr>
<td>4-4</td>
<td>Effect of AC-Side Inductance L_s</td>
<td>47</td>
</tr>
<tr>
<td>4-5</td>
<td>Effect of Discontinuous Current</td>
<td>51</td>
</tr>
<tr>
<td>4-6</td>
<td>Inverter Operation</td>
<td>51</td>
</tr>
<tr>
<td>4-7</td>
<td>AC-Side Waveforms</td>
<td>55</td>
</tr>
<tr>
<td>4-8</td>
<td>Other Three-Phase Converters</td>
<td>61</td>
</tr>
<tr>
<td>4-9</td>
<td>Summary</td>
<td>61</td>
</tr>
<tr>
<td>4-10</td>
<td>References</td>
<td>62</td>
</tr>
</tbody>
</table>

Chapter 5 DC-to-DC Switch-Mode Converters

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-1</td>
<td>Introduction</td>
<td>63</td>
</tr>
<tr>
<td>5-2</td>
<td>Control of dc–dc Converters</td>
<td>64</td>
</tr>
<tr>
<td>5-3</td>
<td>Step-Down (Buck) Converter</td>
<td>66</td>
</tr>
<tr>
<td>5-4</td>
<td>Step-Up (Boost) Converter</td>
<td>75</td>
</tr>
<tr>
<td>5-5</td>
<td>Buck-Boost Converter</td>
<td>81</td>
</tr>
<tr>
<td>5-6</td>
<td>Cuk dc–dc Converter</td>
<td>87</td>
</tr>
<tr>
<td>5-7</td>
<td>Full-Bridge dc–dc Converter</td>
<td>91</td>
</tr>
<tr>
<td>5-8</td>
<td>DC–DC Converter Comparison</td>
<td>98</td>
</tr>
<tr>
<td>5-9</td>
<td>Summary</td>
<td>100</td>
</tr>
<tr>
<td>5-10</td>
<td>References</td>
<td>101</td>
</tr>
</tbody>
</table>

Chapter 6 Switch-Mode DC-to-AC Inverters: dc ↔ Sinusoidal ac

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6-1</td>
<td>Introduction</td>
<td>102</td>
</tr>
<tr>
<td>6-2</td>
<td>Basic Concepts of Switch-Mode Inverters</td>
<td>104</td>
</tr>
</tbody>
</table>
Chapter 6 Single-Phase Inverters

- **6-3 Single-Phase Inverters**
- **6-4 Three-Phase Inverters**
- **6-5 Effect of Blanking Time on Output Voltage in PWM Inverters**
- **6-6 Other Inverter Switching Schemes**
- **6-7 Rectifier Mode of Operation**
- **6-8 Summary**
- **6-9 References**

Chapter 7 Resonant Converters: Zero-Voltage and/or Zero-Current Switchings

- **7-1 Introduction**
- **7-2 Classification of Resonant Converters**
- **7-3 Basic Resonant Circuit Concepts**
- **7-4 Load-Resonant Converters**
- **7-5 Resonant-Switch Converters**
- **7-6 Zero-Voltage-Switching, Clamped-Voltage (ZVS-CV) Topologies**
- **7-7 Resonant DC-Link Inverters with Zero-Voltage Switchings**
- **7-8 High Frequency Link Integral-Half-Cycle Converters**
- **7-9 Summary**
- **7-10 References**

PART 3 POWER SUPPLY APPLICATIONS

Chapter 8 Switching DC Power Supplies

- **8-1 Introduction**
- **8-2 Linear Power Supplies**
- **8-3 Overview of Switching Power Supplies**
- **8-4 DC–DC Converters with Electrical Isolation**
- **8-5 Control of Switch-Mode DC Power Supplies**
- **8-6 Power Supply Protection**
- **8-7 Electrical Isolation in the Feedback Loop**
- **8-8 Designing to Meet the Power Supply Specifications**
- **8-9 Summary**
- **8-10 References**

Chapter 9 Power Conditioners and Uninterruptible Power Supplies

- **9-1 Introduction**
- **9-2 Power Line Disturbances**
- **9-3 Power Conditioners**
- **9-4 Uninterruptible Power Supplies (UPS)**
- **9-5 Summary**
- **9-6 References**
PART 4 MOTOR DRIVE APPLICATIONS

Chapter 10 Introduction to Motor Drives

10-1 Introduction 275
10-2 Criteria for Selecting Drive Components 277
10-3 Summary 284
10-4 References 285

Chapter 11 DC-Motor Drives

11-1 Introduction 286
11-2 Equivalent Circuit of DC Motors 286
11-3 Permanent-Magnet DC Motors 289
11-4 DC Motors with a Separately Excited Field Winding 290
11-5 Effect of Armature Current Waveform 292
11-6 DC Servo Drives 292
11-7 Adjustable-Speed DC Drives 301
11-8 Summary 306
11-9 References 308

Chapter 12 Induction Motor Drives

12-1 Introduction 309
12-2 Basic Principles of Induction Motor Operation 310
12-3 Induction Motor Characteristics at Rated (Line) Frequency and Rated Voltage 315
12-4 Speed Control By Varying Stator Frequency and Voltage 317
12-5 Impact of Nonsinusoidal Excitation on Induction Motors 326
12-6 Variable-Frequency Converter Classifications 329
12-7 Variable-Frequency PWM-VSI Drives 330
12-8 Variable-Frequency Square-Wave-VSI Drives 336
12-9 Variable-Frequency Current-Source Inverter (CSI) Drives 338
12-10 Comparison of Variable Frequency Drives 339
12-11 Line-Frequency Variable-Voltage Drives 339
12-12 Reduced Voltage Starting (“Soft Start”) of Induction Motors 342
12-13 Speed Control by Static Slip-Power Recovery 342
12-14 Summary 343
12-15 References 346

Chapter 13 Synchronous-Motor Drives

13-1 Introduction 347
13-2 Basic Principles of Synchronous Motor Operation 347
13-3 Synchronous Servomotor Drives with Sinusoidal Waveforms 351
13-4 Synchronous Motor Drives with Trapezoidal Waveforms 353
Chapter 14 Step-Motor Drives

14-1 Introduction 361
14-2 Variable-Reluctance Step Motors 361
14-3 Permanent-Magnet Step-Motors 363
14-4 Hybrid Step-Motors 364
14-5 Modes of Excitation in Step-Motors 366
14-6 Drive Circuits for Step-Motors 370
14-7 Open-Loop Operation of Step-Motors 372
14-8 Closed-Loop Control of Step-Motors 373
14-9 Switched-Reluctance Motor Drives 373
14-10 Summary 373
14-11 References 374

PART 5 OTHER APPLICATIONS

Chapter 15 Residential and Industrial Applications

15-1 Introduction 377
15-2 Residential Applications 377
15-3 Industrial Applications 381
15-4 Summary 385
15-5 References 385

Chapter 16 Electric Utility Applications

16-1 Introduction 386
16-2 High-Voltage DC (HVDC) Transmission 386
16-3 Static Var Control (SVC) 397
16-4 Interconnection of Renewable Energy Sources and Energy Storage 402
16-5 Summary 406
16-6 References 407

Chapter 17 Optimizing the Utility Interface with Power Electronic System

17-1 Introduction 409
17-2 Generation of Current Harmonics 410
17-3 Current Harmonics and Power Factor 411
17-4 Harmonic Standards and Recommend Practices 411
PART 6 SEMICONDUCTOR DEVICES AND CONVERTER DESIGN

Chapter 18 Basic Semiconductor Physics

18-1 Introduction 435
18-2 Conduction Processes in Semiconductors 436
18-3 PN Junctions 442
18-4 Charge Control Description of PN Junction Operation 446
18-5 Impact Ionization 448
18-6 Summary 449
18-7 References 450

Chapter 19 Power Diodes

19-1 Introduction 451
19-2 Basic Structure and I-V Characteristics 451
19-3 Breakdown Voltage Considerations 453
19-4 On-State Losses 459
19-5 Switching Characteristics 462
19-6 Schottky Diodes 467
19-7 Diode Snubbers 470
19-8 Summary 478
19-9 References 479

Chapter 20 BJTs with Drive and Snubber Circuits

20-1 Introduction 480
20-2 Vertical Power Transistor Structures 480
20-3 I-V Characteristics 482
20-4 Physics of BJT Operation 484
20-5 Switching Characteristics 490
20-6 Breakdown Voltages 497
20-7 Second Breakdown 498
20-8 On-State Losses 500
20-9 Safe Operating Areas 501
20-10 Design of Drive Circuits for BJTs 503
20-11 Snubber Circuits for BJTs and Darlingtons 520
20-12 Summary 532
20-13 References 534
Chapter 21 Power MOSFETs

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>21-1</td>
<td>Introduction</td>
<td>535</td>
</tr>
<tr>
<td>21-2</td>
<td>Basic Structure</td>
<td>535</td>
</tr>
<tr>
<td>21-3</td>
<td>I-V Characteristics</td>
<td>538</td>
</tr>
<tr>
<td>21-4</td>
<td>Physics of Device Operation</td>
<td>540</td>
</tr>
<tr>
<td>21-5</td>
<td>Switching Characteristics</td>
<td>545</td>
</tr>
<tr>
<td>21-6</td>
<td>Operating Limitations and Safe Operating Areas</td>
<td>550</td>
</tr>
<tr>
<td>21-7</td>
<td>Design of Gate Drive Circuits</td>
<td>559</td>
</tr>
<tr>
<td>21-8</td>
<td>Snubber Circuits</td>
<td>565</td>
</tr>
<tr>
<td>21-9</td>
<td>Summary</td>
<td>566</td>
</tr>
<tr>
<td>21-10</td>
<td>References</td>
<td>567</td>
</tr>
</tbody>
</table>

Chapter 22 Thyristors

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>22-1</td>
<td>Introduction</td>
<td>568</td>
</tr>
<tr>
<td>22-2</td>
<td>Basic Structure</td>
<td>568</td>
</tr>
<tr>
<td>22-3</td>
<td>I-V Characteristics</td>
<td>570</td>
</tr>
<tr>
<td>22-4</td>
<td>Physics of Device Operation</td>
<td>571</td>
</tr>
<tr>
<td>22-5</td>
<td>Switching Characteristics</td>
<td>575</td>
</tr>
<tr>
<td>22-6</td>
<td>Methods of Improving dl/dt and dV/dt Ratings</td>
<td>581</td>
</tr>
<tr>
<td>22-7</td>
<td>Thyristor Gating Circuits</td>
<td>583</td>
</tr>
<tr>
<td>22-8</td>
<td>Snubber Circuits for Thyristors</td>
<td>587</td>
</tr>
<tr>
<td>22-9</td>
<td>Summary</td>
<td>590</td>
</tr>
<tr>
<td>22-10</td>
<td>References</td>
<td>592</td>
</tr>
</tbody>
</table>

Chapter 23 Gate Turn-Off Thyristors

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>23-1</td>
<td>Introduction</td>
<td>593</td>
</tr>
<tr>
<td>23-2</td>
<td>Basic Structure and I-V Characteristics</td>
<td>593</td>
</tr>
<tr>
<td>23-3</td>
<td>Physics of Turn-Off Operation</td>
<td>595</td>
</tr>
<tr>
<td>23-4</td>
<td>GTO Switching Characteristics</td>
<td>597</td>
</tr>
<tr>
<td>23-5</td>
<td>Snubber Circuits</td>
<td>603</td>
</tr>
<tr>
<td>23-6</td>
<td>Overcurrent Protection of GTOs</td>
<td>604</td>
</tr>
<tr>
<td>23-7</td>
<td>Summary</td>
<td>605</td>
</tr>
<tr>
<td>23-8</td>
<td>References</td>
<td>606</td>
</tr>
</tbody>
</table>

Chapter 24 Insulated Gate Bipolar Transistors

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>24-1</td>
<td>Introduction</td>
<td>607</td>
</tr>
<tr>
<td>24-2</td>
<td>Basic Structure</td>
<td>607</td>
</tr>
<tr>
<td>24-3</td>
<td>I-V Characteristics</td>
<td>610</td>
</tr>
<tr>
<td>24-4</td>
<td>Physics of Device Operation</td>
<td>610</td>
</tr>
<tr>
<td>24-5</td>
<td>Latchup in IGBTs</td>
<td>613</td>
</tr>
<tr>
<td>24-6</td>
<td>Switching Characteristics</td>
<td>615</td>
</tr>
<tr>
<td>24-7</td>
<td>Device Limits and Safe Operating Areas</td>
<td>618</td>
</tr>
<tr>
<td>24-8</td>
<td>Drive and Snubber Circuits</td>
<td>619</td>
</tr>
<tr>
<td>24-9</td>
<td>Summary</td>
<td>620</td>
</tr>
<tr>
<td>24-10</td>
<td>References</td>
<td>621</td>
</tr>
</tbody>
</table>
Chapter 25 Emerging Devices and Circuits

25-1 Introduction 622
25-2 Power Junction Field Effect Transistors 622
25-3 Field-Controlled Thyristor 627
25-4 JFET-Based Devices Versus Other Power Devices 630
25-5 MOS-Controlled Thyristors 630
25-6 High Voltage Integrated Circuits 632
25-7 New Semiconductor Materials 636
25-8 Summary 637
25-9 References 638

Chapter 26 Passive Components and Practical Converter Design Considerations

26-1 Introduction 639
26-2 Design of Inductors 639
26-3 Transformer Design 646
26-4 Selection of Capacitors 650
26-5 Resistors 651
26-6 Current Measurements 651
26-7 Heat sinking 653
26-8 Circuit Layout 654
26-9 Summary 655
26-10 References 656

Index 657