SURFACE FORCES

B. V. Derjaguin
N. V. Churaev
and
V. M. Muller

Institute of Physical Chemistry
Academy of Sciences of the USSR
Moscow, USSR

Translated from Russian by
V. I. Kisin

Translation Edited by
J. A. Kitchener

CONSULTANTS BUREAU • NEW YORK AND LONDON
CONTENTS

Chapter 1. FORCES NEAR INTERFACES 1

Introduction ... 1

1.1. Molecular and Electric Forces in Interfacial Layers 4

1.2. Formation and Structure of Electrical Double Layers 8

1.3. Diffuse Part of the EDL. The Poisson–Boltzmann Equation 9

1.4. The Debye–Hückel Equation. Relation between Surface Potential and Surface Charge 12

1.5. Planar Double Layer. Some Exact Solutions of the General Poisson–Boltzmann Equation . 13

1.6. More Complex Situations: Curved Surface, and Discreteness of Surface Charge 15

1.7. Adsorption of Ions in the Stern Layer 16

1.8. Charging of Surfaces by Dissociation of Ionogenic Groups 18

1.9. Testing of Models of Ionized Surfaces 18

References .. 19

Chapter 2. DISJOINING PRESSURE 25

2.1. Two Kinds of Surface Force 25

2.2. Definition of Disjoining Pressure 27
2.3. Relationship between Disjoining Pressure and Other Thermodynamic Functions 31
2.4. Pressure Distribution in the Interfacial Transition Zone 33
2.5. Refinement of the Definition of Disjoining Pressure 36
2.6. Equilibrium of Films under Gravity 40
2.7. Hydrodynamics of Thin Films 44
2.8. Thermodynamic Theory of Interaction between Bodies with Curved Surfaces 46
References 51

Chapter 3. THE THERMODYNAMIC THEORY OF STABILITY OF THIN FILMS 53
3.1. Stability and Equilibrium of Interlayers between Parallel Plates 53
3.2. Stability of Interlayers between Convex Bodies 55
3.3. Stability of Wetting Films 57
3.4. Stability of Interlayers between Two Identical Fluids 59
References 83

Chapter 4. DISPERSION FORCES IN THIN INTERLAYERS AND FILMS 85
4.1. Historical Background of the Theory of Intermolecular Forces 85
4.2. Direct Measurements of Molecular Attraction between Two Solids 88
4.3. Experimental Results 93
4.4. The Theory of Molecular Attraction between Macroscopic Objects 98
4.4.1. Calculation of the Interaction between Macroscopic Objects by Summing the Interactions between Micro-objects 98
4.4.2. E. M. Lifshitz's Macroscopic Theory of Molecular Attraction between Condensed-State Bodies 100
CONTENTS

4.5. Comparison of the Results of Early Experiments with the Theory .. 106

4.5.1. Comparison with the Results of Calculations Carried Out by the Method of Summation of All Pairwise Molecular Interactions .. 106

4.5.2. Comparison with the Macroscopic Theory of Molecular Attraction 106

4.6. Current Status of the Macroscopic Theory of Molecular Forces ... 109

4.7. Main Results of the Experimental Verification of the Theory of Molecular Interaction between Macroscopic Bodies ... 128

References ... 146

Chapter 5. THE ADSORPTION COMPONENT OF DISJOINING PRESSURE IN NONIONIC SOLUTIONS ... 151

References ... 171

Chapter 6. THE ELECTROSTATIC COMPONENT OF DISJOINING PRESSURE ... 173

6.1. Methods of Calculation of Disjoining Pressure \(u_e \) ... 173

6.2. Interaction between Identical Layers. Boundary Conditions .. 179

6.3. Interaction at Constant Charge or at Constant Surface Potential .. 181

6.4. Interaction between Double Layers in Asymmetrical Electrolytes .. 183

6.5. Some Approximate Formulas for Disjoining Pressure ... 185

6.6. Gibbs Free Energy of the Interaction between Flat Double Layers under Different Boundary Conditions ... 189

6.7. Interaction between Charged Spherical Particles ... 193

6.8. Interaction between Unequally Charged Surfaces .. 198

6.9. Effect of Discreteness of Surface Charge .. 210

6.10. Disjoining Pressure in a Thin Free Film .. 218
6.11. Experimental Verification of the Theory of Electrostatic Interaction 222
References 228

Chapter 7. THE STRUCTURE OF BOUNDARY LAYERS OF LIQUIDS AND THE STRUCTURAL COMPONENT OF DISJOINING PRESSURE 231

7.2. Boundary Layers with Liquid-Crystal Structure 244
7.3. Boundary Layers of Nonpolar Liquids 252
7.4. The Study of Boundary Layers of Liquids by the Blow-Off Technique 253
7.5. Theory of the Structural Component of Disjoining Pressure 264
7.6. Experimental Isotherms of the Structural Component of Disjoining Pressure 271
References 283

Chapter 8. THE DERJAGUIN–LANDAU–VERWEY–OVERBEEK (DLVO) THEORY OF STABILITY OF LYOPHOBIC COLLOIDS 293

8.1. Effects of Electrolytes on Lyophobic Colloids 293
8.2. Kinetics of Coagulation of Lyophobic Colloids 296
8.3. Coagulation Criteria 297
8.4. Exact Solution 300
8.5. Effect of Charging Mechanism 302
8.6. Further Development and Verification of the DLVO Theory 305
References 308

Chapter 9. THE THEORY OF HETEROCAOAGULATION IN LYOPHOBIC SYSTEMS 311

9.1. Destabilization Criteria for Heterodisper- sions with a Positive Hamaker Constant 312
9.2. Destabilization Criteria for Dispersions with a Negative Hamaker Constant 319
9.3. Development and Verification of the Theory 323
References 325
<table>
<thead>
<tr>
<th>CONTENTS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 10. WETTING FILMS</td>
<td>327</td>
</tr>
<tr>
<td>10.1. Disjoining Pressure of Wetting Films</td>
<td>327</td>
</tr>
<tr>
<td>10.2. Experimental Methods of Determining the Disjoining Pressure</td>
<td>330</td>
</tr>
<tr>
<td>Isotherms of Wetting Films Formed by Various Liquids</td>
<td>338</td>
</tr>
<tr>
<td>10.3. Disjoining Pressure Isotherms of Wetting Films Formed by Various</td>
<td>338</td>
</tr>
<tr>
<td>Liquids</td>
<td>359</td>
</tr>
<tr>
<td>10.4. Wetting Films on Nonflat Surfaces</td>
<td>359</td>
</tr>
<tr>
<td>References</td>
<td>364</td>
</tr>
<tr>
<td>Chapter 11. SURFACE FORCES IN TRANSPORT PHENOMENA</td>
<td>369</td>
</tr>
<tr>
<td>11.1. Capillary Osmosis</td>
<td>369</td>
</tr>
<tr>
<td>11.2. Reverse Osmosis</td>
<td>380</td>
</tr>
<tr>
<td>11.3. Diffusiophoresis</td>
<td>388</td>
</tr>
<tr>
<td>11.4. Thermo-osmosis, the Mechanocaloric Effect, and Thermophoresis</td>
<td>390</td>
</tr>
<tr>
<td>11.5. Thermocrystallization Flow in Thin Nonfreezing interlayers</td>
<td>409</td>
</tr>
<tr>
<td>References</td>
<td>427</td>
</tr>
<tr>
<td>Conclusion</td>
<td>433</td>
</tr>
<tr>
<td>Index</td>
<td>435</td>
</tr>
</tbody>
</table>