Numerical Methods for Engineering Application

JOEL H. FERZIGER

Department of Mechanical Engineering
Stanford University
Stanford, California

A Wiley-Interscience Publication

JOHN WILEY & SONS

New York Chichester Brisbane Toronto Singapore
Contents

CHAPTER 1 INTERPOLATION

1. Lagrange Interpolation, 2
2. Hermite Interpolation, 12
3. Splines, 12
4. Tension Spline, 20
5. Parametric and Multidimensional Interpolation, 21

Problems, 23

CHAPTER 2 INTEGRATION

1. Newton-Cotes Formulas, 25
2. Richardson Extrapolation, 30
3. Romberg Integration, 32
4. Adaptive Quadrature, 37
5. Gauss Quadrature, 41
6. Singularities, 47
7. Concluding Remarks, 48

Problems, 49

CHAPTER 3 ORDINARY DIFFERENTIAL EQUATIONS

1. Numerical Differentiation, 51
2. Euler's Method, 57
3. Stability, 60
4. Backward or Implicit Euler Method, 69
5. Accuracy Improvement, 72
6. Predictor-Corrector and Runge–Kutta Methods, 76
7. Multistep Methods, 84
8. The Choice of Method and Automatic Error Control, 92
9. Systems of Equations—Stiffness, 95
Preface

10. Systems of Equations—Inherent Instability, 104
12. Boundary Value Problems: II. Direct Methods, 110
13. Boundary Value Problems: III. Higher Order Methods, 115
15. Boundary Value Problems: V. Finite Element Methods, 124
16. Boundary Value Problems: VI. Eigenvalue Problems, 126

CHAPTER 4. PARTIAL DIFFERENTIAL EQUATIONS 135

1. Parabolic PDEs: I. Explicit Methods, 138
2. Parabolic PDEs: II. The Crank–Nicolson Method, 147
3. Parabolic PDEs: III. The DuFort–Frankel Method, 152
4. Parabolic PDEs: IV. The Keller Box Method and Higher Order Methods, 155
5. Parabolic PDEs: V. Two and Three Dimensions—Alternating Direction Implicit (ADI) Methods, 158
6. Parabolic PDEs: VI. Other Coordinate Systems and Nonlinearity, 167
7. Elliptic PDEs: I. Finite Differencing, 171
8. Elliptic PDEs: II. Jacobi Iteration Method, 177
10. Elliptic PDEs: IV. Line Relaxation Method, 187
11. Elliptic PDEs: V. Successive Overrelaxation (SOR) Method, 189
12. Elliptic PDEs: VI. Alternating Direction Implicit (ADI) Methods, 197
13. Elliptic PDEs: VII. Finite Element Methods, 202
14. Discrete Fourier Transforms, 207
15. The Fast Fourier Transform (FFT) Algorithm, 212
16. Elliptic PDEs: VIII. Fourier Methods, 216
17. Elliptic PDEs: IX. Boundary Integral Methods, 218
18. Hyperbolic PDEs: I. Review of Theory, 221
19. Hyperbolic PDEs: II. Method of Characteristics, 224
20. Hyperbolic PDEs: III. Explicit Methods, 234
21. Hyperbolic PDEs: IV. Implicit Methods, 241
22. Hyperbolic PDEs V. Splitting Methods, 244

APPENDIX A. SOLUTION OF TRIDIAGONAL SYSTEMS 253
APPENDIX B. THE NEWTON–RAPHSON METHOD 255
REFERENCES AND ANNOTATED BIBLIOGRAPHY 260
INDEX 263