CONTENTS

1 / FUNDAMENTALS OF ELEMENTARY CALCULUS

1. Introduction 1
1.1 Functions 2
1.11 Derivatives 12
1.12 Maxima and Minima 20
1.2 The Law of the Mean (The Mean-Value Theorem for Derivatives) 26
1.3 Differentials 32
1.4 The Inverse of Differentiation 35
1.5 Definite Integrals 38
1.51 The Mean-Value Theorem for Integrals 45
1.52 Variable Limits of Integration 46
1.53 The Integral of a Derivative 49
1.6 Limits 53
1.61 Limits of Functions of a Continuous Variable 54
1.62 Limits of Sequences 58
1.63 The Limit Defining a Definite Integral 67
1.64 The Theorem on Limits of Sums, Products, and Quotients 67

2 / THE REAL NUMBER SYSTEM

2. Numbers 72
2.1 The Field of Real Numbers 72
2.2 Inequalities. Absolute Value 74
2.3 The Principle of Mathematical Induction 75
2.4 The Axiom of Continuity 77
2.5 Rational and Irrational Numbers 78
2.6 The Axis of Reals 79
2.7 Least Upper Bounds 80
2.8 Nested Intervals 82
CONTENTS

3 / CONTINUOUS FUNCTIONS

3. Continuity 85
3.1 Bounded Functions 86
3.2 The Attainment of Extreme Values 88
3.3 The Intermediate-Value Theorem 90

4 / EXTENSIONS OF THE LAW OF THE MEAN

4. Introduction 95
4.1 Cauchy's Generalized Law of the Mean 95
4.2 Taylor's Formula with Integral Remainder 97
4.3 Other Forms of the Remainder 99
4.4 An Extension of the Mean-Value Theorem for Integrals 105
4.5 L'Hospital's Rule 106

5 / FUNCTIONS OF SEVERAL VARIABLES

5. Functions and Their Regions of Definition 116
5.1 Point Sets 117
5.2 Limits 122
5.3 Continuity 125
5.4 Modes of Representing a Function 127

6 / THE ELEMENTS OF PARTIAL DIFFERENTIATION

6. Partial Derivatives 130
6.1 Implicit Functions 132
6.2 Geometrical Significance of Partial Derivatives 135
6.3 Maxima and Minima 138
6.4 Differentials 144
6.5 Composite Functions and the Chain Rule 154
6.51 An Application in Fluid Mechanics 162
6.52 Second Derivatives by the Chain Rule 164
6.53 Homogeneous Functions, Euler's Theorem 168
6.6 Derivatives of Implicit Functions 172
6.7 Extremal Problems with Constraints 177
6.8 Lagrange's Method 182
6.9 Quadratic Forms 189

7 / GENERAL THEOREMS OF PARTIAL DIFFERENTIATION

7. Preliminary Remarks 196
7.1 Sufficient Conditions for Differentiability 197
11.2 The Vector Space $\mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$ 313
11.3 Matrices and Linear Transformations 313
11.4 Some Special Cases 316
11.5 Norms 318
11.6 Metrics 319
11.7 Open Sets and Continuity 320
11.8 A Norm on $\mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$ 324
11.9 $\mathcal{L}(\mathbb{R}^n)$ 327
11.10 The Set of Invertible Operators 330

12 / DIFFERENTIAL CALCULUS OF FUNCTIONS FROM \mathbb{R}^n TO \mathbb{R}^m

12. Introduction 335
12.1 The Differential and the Derivative 336
12.2 The Component Functions and Differentiability 340
12.21 Directional Derivatives and the Method of Steepest Descent 343
12.3 Newton's Method 347
12.4 A Form of the Law of the Mean for Vector Functions 350
12.41 The Hessian and Extreme Values 352
12.5 Continuously Differentiable Functions 354
12.6 The Fundamental Inversion Theorem 355
12.7 The Implicit Function Theorem 361
12.8 Differentiation of Scalar Products of Vector Valued Functions of a Vector Variable 366

13 / DOUBLE AND TRIPLE INTEGRALS

13. Preliminary Remarks 376
13.1 Motivations 376
13.2 Definition of a Double Integral 379
13.21 Some Properties of the Double Integral 381
13.22 Inequalities. The Mean-Value Theorem 382
13.23 A Fundamental Theorem 383
13.3 Iterated Integrals. Centroids 384
13.4 Use of Polar Co-ordinates 390
13.5 Applications of Double Integrals 395
13.51 Potentials and Force Fields 401
13.6 Triple Integrals 404
13.7 Applications of Triple Integrals 409
13.8 Cylindrical Co-ordinates 412
13.9 Spherical Co-ordinates 413
CONTENTS

14 / CURVES AND SURFACES
14. Introduction 417
14.1 Representations of Curves 417
14.2 Arc Length 418
14.3 The Tangent Vector 421
14.31 Principal normal. Curvature 423
14.32 Binormal. Torsion 425
14.4 Surfaces 428
14.5 Curves on a Surface 433
14.6 Surface Area 437

15 / LINE AND SURFACE INTEGRALS
15. Introduction 445
15.1 Point Functions on Curves and Surfaces 445
15.12 Line Integrals 446
15.13 Vector Functions and Line Integrals. Work 451
15.2 Partial Derivatives at the Boundary of a Region 455
15.3 Green’s Theorem in the Plane 457
15.31 Comments on the Proof of Green’s Theorem 463
15.32 Transformations of Double Integrals 465
15.4 Exact Differentials 469
15.41 Line Integrals Independent of the Path 474
15.5 Further Discussion of Surface Area 478
15.51 Surface Integrals 480
15.6 The Divergence Theorem 484
15.61 Green’s Identities 492
15.62 Transformation of Triple Integrals 494
15.7 Stokes’s Theorem 499
15.8 Exact Differentials in Three Variables 505

16 / POINT-SET THEORY
16. Preliminary Remarks 512
16.1 Finite and Infinite Sets 512
16.2 Point Sets on a Line 514
16.3 The Bolzano–Weierstrass Theorem 517
16.31 Convergent Sequences on a Line 518
16.4 Point Sets in Higher Dimensions 520
16.41 Convergent Sequences in Higher Dimensions 521
16.5 Cauchy’s Convergence Condition 522
16.6 The Heine–Borel Theorem 523
17 / FUNDAMENTAL THEOREMS ON CONTINUOUS FUNCTIONS

17. Purpose of the Chapter 527
17.1 Continuity and Sequential Limits 527
17.2 The Boundedness Theorem 529
17.3 The Extreme-Value Theorem 529
17.4 Uniform Continuity 529
17.5 Continuity of Sums, Products, and Quotients 532
17.6 Persistence of Sign 532
17.7 The Intermediate-Value Theorem 533

18 / THE THEORY OF INTEGRATION

18. The Nature of the Chapter 535
18.1 The Definition of Integrability 535
18.11 The Integrability of Continuous Functions 539
18.12 Integrable Functions with Discontinuities 540
18.2 The Integral as a Limit of Sums 542
18.21 Duhamel’s Principle 545
18.3 Further Discussion of Integrals 548
18.4 The Integral as a Function of the Upper Limit 548
18.41 The Integral of a Derivative 550
18.5 Integrals Depending on a Parameter 551
18.6 Riemann Double Integrals 554
18.61 Double Integrals and Iterated Integrals 557
18.7 Triple Integrals 559
18.8 Improper Integrals 559
18.9 Stieltjes Integrals 560

19 / INFINITE SERIES

19. Definitions and Notation 566
19.1 Taylor’s Series 569
19.11 A Series for the Inverse Tangent 572
19.2 Series of Nonnegative Terms 573
19.21 The Integral Test 577
19.22 Ratio Tests 579
19.3 Absolute and Conditional Convergence 581
19.31 Rearrangement of Terms 585
19.32 Alternating Series 587
19.4 Tests for Absolute Convergence 590
19.5 The Binomial Series 597
19.6 Multiplication of Series 600
19.7 Dirichlet’s Test 604