POTENTIAL ENERGY HYPERSURFACES

PAUL G. MEZEY
Department of Chemistry and Department of Mathematics, University of Saskatchewan, Saskatoon, Canada S7N 0W0
CONTENTS

FOREWORD

INTRODUCTION

Chapter I THE MOLECULAR ENERGY EXPECTATION VALUE

I.1 ENERGY, THE FUNDAMENTAL QUANTUM MECHANICAL OBSERVABLE 4
I.2 THE BORN-OPPENHEIMER APPROXIMATION AND THE CONCEPT OF NUCLEAR GEOMETRY 6
I.3. GENERALIZATIONS OF NUCLEAR COORDINATES 18
I.4 GLOBAL AND LOCAL COORDINATE SYSTEMS AND THE CONCEPT OF NUCLEAR CONFIGURATION SPACE 21
I.4.1 Global cartesian coordinate systems 21
I.4.2 Local internal coordinate systems 27
I.4.3 Symmetry coordinates and normal coordinates of the small amplitude vibrational problem 30
I.4.4 Special global coordinate systems 45
I.4.5 Special purpose coordinate systems for small molecules 47
I.5 INTERSECTIONS OF ENERGY HYPERSURFACES: ADIABATIC AND DIABATIC REPRESENTATIONS 51

Chapter II GEOMETRICAL PROPERTIES OF ENERGY HYPERSURFACES 61

II.1 ENERGY DERIVATIVES: FORCES AND FORCE CONSTANTS 61
II.1.1 The Hellmann-Feynman theorem 61
II.2 MINIMA, SADDLE POINTS AND GENERAL CRITICAL POINTS 66
II.2.1 Classification of critical points 69
II.2.2 Interrelations among critical points: critical point inequalities 77
II.3 MINIMUM ENERGY PATH AND THE INTRINSIC REACTION COORDINATE

II.3.1 Steepest descent paths and stationary paths
II.3.2 Steepest descent paths and the intrinsic reaction coordinate
II.3.3 Symmetry properties of transition structures and steepest descent paths
II.3.4 Steepest descent approach to critical points

II.4 DIFFERENTIAL GEOMETRY OF ENERGY HYPERSURFACES

Chapter III CALCULATION AND REPRESENTATION OF ENERGY HYPERSURFACES

III.1 THE HARTREE-FOCK-ROOTHAAN-HALL METHOD FOR THE CALCULATION OF MOLECULAR WAVEFUNCTIONS
III.2 THE ELECTRON CORRELATION PROBLEM AND THE CORRELATION ENERGY
III.3 CALCULATION OF SEMIEMPIRICAL AND EMPIRICAL POTENTIAL FUNCTIONS
 III.3.1 Semiempirical Quantum Chemical Methods
 III.3.2 Molecular Mechanics Method and Empirical Potential Functions
III.4 THE FORCE METHOD AND CALCULATION OF HIGHER DERIVATIVES
III.5 MINIMUM SEARCH METHODS FOR THE DETERMINATION OF STABLE CHEMICAL SPECIES
 III.5.1 Non-gradient Methods of Energy Minimization
 III.5.2 Gradient Methods for Minimum Search
III.6 SADDLE POINT SEARCH METHODS FOR THE DETERMINATION OF TRANSITION STRUCTURES
III.7 FITTING OF POTENTIAL ENERGY HYPERSURFACES, POLYNOMIALS, SPLINES AND TRIGONOMETRIC FUNCTIONS

Chapter IV THE QUANTUM CHEMICAL CONCEPT OF MOLECULES REVISITED

IV.1 QUANTIZATION AND CONTINUITY
IV.2 WAVE PACKET TOPOLOGY
IV.3 THE TOPOLOGY OF NUCLEAR CONFIGURATIONS
Chapter V MOLECULAR TOPOLOGY 198

V.1 THE REDUCED NUCLEAR CONFIGURATION SPACE: METRIC SPACE M 198
V.1.1 An equivalence relation and a general correspondence principle 198
V.1.2 Metric properties of the reduced nuclear configuration space M 204
V.1.3 Continuity of energy hypersurfaces as functions of internal configurations K 215
V.1.4 Reflection properties of the reduced nuclear configuration space M: a tangent criterion 219

V.2 CATCHMENT REGIONS OF POTENTIAL ENERGY HYPERSURFACES: THE REPRESENTATION OF CHEMICAL SPECIES 227
V.2.1 The intuitive concept of catchment regions 227
V.2.2 Relaxation of formal nuclear configurations in the laboratory frame 235
V.2.3 Catchment regions in Euclidean nuclear configuration space \(\mathbb{R}^{3N_E} \) 236
V.2.4 Catchment regions in the reduced nuclear configuration space M 246
V.2.5 Exciplex and excimer topologies: catchment regions of excited state potential energy hypersurfaces 257

V.3 MANIFOLD THEORY OF POTENTIAL ENERGY SURFACES AND CATCHMENT REGIONS 262
V.3.1 Manifold Theory of a General Nuclear Configuration Space \(\mathbb{R}^n \) 263
V.3.2 Manifold Structure of the Reduced Nuclear Configuration Space M 270
V.3.3 The Number of Chemical Species Along a Hypersurface 280

V.4 POTENTIAL DEFYING CHEMICAL SPECIES 301
V.4.1 The intrinsic kinetic energy along potential energy hypersurfaces 303
V.4.2 The construction of approximate \(\Delta E^0(r) \) functionals 308
V.4.3 Local geometric criteria for potential defying chemical species 313
V.4.4 Global topological criteria for potential defying chemical species 319
V.5 THE ROLE OF NUCLEAR CHARGES AND RELATIONS BETWEEN
POTENTIAL SURFACES: CONVEXITY THEOREMS IN SPACE W^Z 324

V.5.1 The abstract nuclear charge space W^Z 327
and the product space nR⊗W^Z 327

V.5.2 Level sets of the electronic energy functional
in space W^Z 329

V.5.3 A simple relation between nuclear charges and
potential energy hypersurfaces: a concavity
condition for molecular total energies 346

V.6 CATCHMENT REGIONS AND SYMMETRY 364

Chapter VI REACTION TOPOLOGY 369

VI.1 TOPOLOGICAL REACTION PATHS AND QUANTUM CHEMICAL
REACTION MECHANISMS 369

VI.2 THE ALGEBRAIC STRUCTURE OF THE COMPLETE SET OF
REACTION PATHS 377

VI.2.1 The fundamental groupoid of reaction paths 378

VI.2.2 Tunneling and the extension of the fundamental
groupoid of reaction paths into a semigroup 382

VI.3 THE FUNDAMENTAL GROUP OF REACTION MECHANISMS 384

VI.3.1 The fundamental group and
fundamental reaction mechanisms 385

VI.3.2 Comparing systems of reaction mechanisms:
homomorphisms and isomorphisms
of fundamental groups 390

VI.3.3 Generators for the fundamental group of
reaction mechanisms 393

VI.3.4 Energy dependence within the family of
groups of reaction mechanisms 401

VI.4 THE REACTION GLOBE, THE REACTION POLYHEDRON, AND
HOMOLOGY GROUP THEORY OF REACTION MECHANISMS 409

VI.4.1 The construction of the reaction globe H(F)
and reaction polyhedron P(F) 412

VI.4.2 Chains, cycles, and homology groups
of catchment regions 419