Principles of Conservation Biology

THIRD EDITION

Martha J. Groom
University of Washington
Bothell and Seattle

Gary K. Meffe
Department of Wildlife Ecology and Conservation
University of Florida

C. Ronald Carroll
Director for Science in the River Basin Science and Policy Center
University of Georgia

Sinauer Associates, Inc. • Publishers
Sunderland, Massachusetts U.S.A.
UNIT I
Conceptual Foundations for Conservation Biology 1

CHAPTER 1
What Is Conservation Biology? 3
Gary K. Meffe, C. Ronald Carroll, and Martha J. Groom

Expanding Human Demands on Earth 3
Responding to Global Change: The Field of Conservation Biology 6
A Brief History of Conservation Biology 7
ESSAY 1.1 A PERSPECTIVE ON THE ROLE OF ACADEMIA IN CONSERVATION BIOLOGY 8
Conservation in the United States 10
Modern conservation biology: A synthesis 12
ESSAY 1.2 WORKING WITH U.S. GOVERNMENT AGENCIES IN BIODIVERSITY CONSERVATION 13
Guiding Principles for Conservation Biology 15
ESSAY 1.3 THE ROLE OF SCIENCE IN DEFINING CONSERVATION PRIORITIES FOR NONGOVERNMENTAL ORGANIZATIONS (NGOS) 16
Some postulates of conservation biology 19
Pervasive Aspects of Conservation Biology Efforts 20
A discipline responding to an immense crisis 20
A multidisciplinary science 20
ESSAY 1.4 A PRIVATE LANDOWNER'S PERSPECTIVE: CONSERVATION BIOLOGY AND THE RURAL LANDOWNER 21
An inexact science 22
A value-laden science 23
BOX 1.1 WINGSPREAD STATEMENT ON THE PRECAUTIONARY PRINCIPLE 24
A science with an evolutionary time scale 24
A science of eternal vigilance 24
A Final Word 24
Summary 25
Questions for Discussion 25

CHAPTER 2
Global Biodiversity: Patterns and Processes 27
Gordon H. Orians and Martha J. Groom

What Is Biodiversity and Why Is it Important? 27
ESSAY 2.1 HIERARCHICAL INDICATORS FOR MONITORING CHANGES IN BIODIVERSITY 28
Components of Biodiversity 30
Genetic diversity 30
Population-level diversity 30
Human cultural diversity 31
Diversity of species 31
ESSAY 2.2 THE IMPORTANCE OF INDIGENOUS KNOWLEDGE SYSTEMS 32
How Many Species Are There? 33
Diversity of Higher Taxa 34
Diversity of Biological Communities 36
Ecosystem and Biome Diversity, and the World's Ecoregions 37
Species Richness over Geological Time 39
Rates of species formation 40
Rates of extinction 41
Current patterns of species richness 41
Patterns of Endemism 43
BOX 2.1 THE IMPORTANCE OF ß-DIVERSITY 44
Latitudinal Gradients in Species Richness 47
Species Richness–Energy Relationships 48
Disturbance and Species Richness 51
Interactions between local and regional species richness 52
The importance of biodiversity 53
BOX 2.2 THE ECOLOGY AND MANAGEMENT OF CROP POLLINATION SERVICES 54
The Future of Biodiversity Studies 55
 ESSAY 2.3 RAPID INVENTORIES FOR CONSERVATION 56
Summary 60
Questions for Discussion 61

CHAPTER 3
Threats to Biodiversity 63
Martha J. Groom

 Major Threats to Biodiversity and Their Interaction 64
 ESSAY 3.1 KILLER WHALES AS SENTINELS OF GLOBAL POLLUTION 66
 ESSAY 3.2 INFECTIOUS DISEASE AND THE CONSERVATION OF BIODIVERSITY 67

Anthropogenic Extinctions and Their Community and Ecosystem Impacts 70
 Indirect impacts of extinctions on animal and plant communities 72
 BOX 3.1 CASCADE EFFECTS RESULTING FROM LOSS OF A CRITICAL SPECIES OR TAXON, OR FROM SPECIES INTRODUCTIONS 73

Current Patterns of Global Endangerment 74
 Globally threatened species 75
 BOX 3.2 THE IUCN RED LIST SYSTEM 76
 Globally threatened processes 78
 ESSAY 3.3 AN ENDANGERED BIOLOGICAL PHENOMENON 79

 Where are species most at risk worldwide? 81
 Endangered species in the United States 81
 Threatened species in other countries 83
 BOX 3.3 HAVE WE SET IN MOTION THE SIXTH MASS EXTINCTION EVENT? 85

What Types of Species Are Most Vulnerable to Extinction? 86
 Species vulnerability due to specialization 86
 Vulnerability of rare species 87
 “Bad luck”: Extrinsic causes of extinction due to human activities 88
 Economic and social contexts of endangerment 89

Responses to the Biodiversity Crisis 89
 CASE STUDY 3.1 ENIGMATIC DECLINES AND DISAPPEARANCES OF AMPHIBIAN POPULATIONS 93
 CASE STUDY 3.2 HOPE FOR A HOTSPOT 99
 CASE STUDY 3.3 KEY INTERNATIONAL AND U.S. LAWS GOVERNING MANAGEMENT AND CONSERVATION OF BIODIVERSITY 104

Summary 108
Questions for Discussion 109

CHAPTER 4
Conservation Values and Ethics 111
J. Baird Callicott

 The Value of Biodiversity 111
 Instrumental value 111
 Intrinsic value 113

 Monetizing the Value of Biodiversity 115
 ESSAY 4.1 OUR DUTIES TO ENDANGERED SPECIES 116

Conservation Ethics 119
 Anthropocentrism 119
 The Judeo-Christian stewardship conservation ethic 120
 Traditional non-Western environmental ethics 121

 Biocentrism 124
 ESSAY 4.2 MONKS, TEMPLES, AND TREES: THE SPIRIT OF DIVERSITY 125

 Ecocentrism 127
 ESSAY 4.3 THE IMPORTANCE OF VALUE SYSTEMS IN MANAGEMENT: CONSIDERATIONS IN DESERT FISH MANAGEMENT 130
 CASE STUDY 4.1 CYPRESS FOREST CONSERVATION ON TAIWAN: A QUESTION OF VALUE 131

Summary 134
Questions for Discussion 135

CHAPTER 5
Ecological Economics and Nature Conservation 137
Gareth Edwards-Jones

 Why Do We Need Ecological Economics? 137
 ESSAY 5.1 STEADY-STATE ECONOMICS 139

 Cost–Benefit Analysis and its Application to Conservation 140
 ESSAY 5.2 VALUATION OF ECOLOGICAL SYSTEMS 141

 Project definition 142
 Classification of impacts 143
 Conversion into monetary terms 143

 What Kind of Values Does Biodiversity Have? 144

 Converting Biodiversity’s Value into Monetary Terms 146
 Conventional market approaches 146
 Implicit market techniques 147
 Hypothetical market 147
 Examples of monetary values placed on biodiversity 148
Alternative Decision-Making Methods for the Environment 159
Environmental impact assessment 159
Risk assessment and management 159
Adding nonsubstitutability to CBA 161
CASE STUDY 5.1 THE COSTS OF BIODIVERSITY CONSERVATION: THE CASE OF UGANDA 162
CASE STUDY 5.2 COSTS AND BENEFITS OF RESTORATION OF POST-INDUSTRIAL LANDSCAPES 166
Summary 168
Questions for Discussion 169

UNIT II
Focus on Primary Threats to Biodiversity 171

CHAPTER 6
Habitat Degradation and Loss 173
Martha J. Groom and Carly H. Vynne

What Constitutes Habitat Degradation and When Is Habitat "Lost"? 174
Patterns of Habitat Transformation on Land and In the Sea 176
Forest systems and deforestation patterns 177
Loss of and damage to grassland, savanna, and shrubland habitats 179
Degradation of freshwater systems 180
Degradation of marine ecosystems 181
Human Activities That Cause Habitat Degradation 182
Agriculture 184
Extractive activities 185
ESSAY 6.1 SCRAPING BOTTOM: THE IMPACT OF FISHING ON SEAFLOOR HABITATS 186
Urbanization and infrastructure development 187
War and violent conflict 188
Pollution as a Form of Habitat Degradation 188
Light pollution 188
Air pollution and acid rain 189
ESSAY 6.2 FOREST OZONE INJURY: HOW PHYSIOLOGY AND CLIMATE PLAY A ROLE 190
Solid waste and plastics 191
Chemical pollution 192
Habitat degradation due to excessive nitrogen inputs 193
Eutrophication 194
ESSAY 6.3 ENDOCRINE DISRUPTING CONTAMINANTS, CONSERVATION, AND THE FUTURE 195

Protecting What’s Left: Approaches to Global Habitat Conservation 197
Biodiversity hotspots 197
The “Global 200” ecoregions 198
Crisis ecoregions 199
Wilderness protection 200
Other habitat conservation priority-setting approaches 200
Conservation of Habitats: The How 201
ESSAY 6.4 DEBT-FOR-NATURE SWAPS 203
CASE STUDY 6.1 THE IMPORTANCE OF LAND USE HISTORY TO CONSERVATION BIOLOGY 204
CASE STUDY 6.2 PROMOTING WILDLIFE CONSERVATION IN AGRICULTURAL LANDSCAPES 208
Summary 211
Questions for Discussion 212

CHAPTER 7
Habitat Fragmentation 213
Reed Noss, Blair Csuti, and Martha J. Groom

ESSAY 7.1 HABITAT "SHREDDING" 214
Fragmentation and Heterogeneity 216
ESSAY 7.2 MOSAICS AND PATCH DYNAMICS 218
The Fragmentation Process 219
BOX 7.1 QUANTIFYING LANDSCAPE PATTERN AND FRAGMENTATION 220
Biological Consequences of Fragmentation 223
Initial exclusion 223
Crowding effect 223
Insularization and area effects 223
Isolation 226
Edge effects 228
Matrix effects 230
The special problem of roads 230
Species invasions 232
Effects on ecological processes 232

Nested Species Distribution Patterns 234
Species Vulnerable to Fragmentation 235
Fragmentation versus Habitat Loss, and Regional Differences 235

BOX 7.2 SPECIES VULNERABLE TO FRAGMENTATION 236

The Problem of Climate Change 239
Conclusions and Recommendations 239

CASE STUDY 7.1 SUBDIVIDING THE WEST 241
CASE STUDY 7.2 THE FRAGMENTATION OF AQUATIC ECOSYSTEMS AND THE ALTERATION OF HYDROLOGIC CONNECTIVITY: NEGLECTED DIMENSIONS OF CONSERVATION ECOLOGY 243
CASE STUDY 7.3 DISSECTING NATURE: THE ISLANDS OF LAGO GURI 246

Summary 250
Questions for Discussion 251

CHAPTER 8
Overexploitation 253
John D. Reynolds and Carlos A. Peres

History of, and Motivations for, Exploitation 253
Impacts of Exploitation on Target Species 254
Tropical terrestrial ecosystems 255

ESSAY 8.1 EAST AFRICAN BLACKWOOD EXPLOITATION 256
Temperate terrestrial ecosystems 258
Aquatic ecosystems 260
Impacts of Exploitation on Nontarget Species and Ecosystems 262
Tropical terrestrial ecosystems 262
Temperate ecosystems 263
Aquatic ecosystems 264

Biological Theory of Sustainable Exploitation 265
Stability of exploitation 267
Constant quota exploitation 267
Proportional (constant effort) exploitation 268
Threshold exploitation 268
Bioeconomics 269
Open access and the tragedy of the commons 269

ESSAY 8.2 USING ECONOMIC ANALYSIS TO BOLSTER CONSERVATION EFFORTS: MARINE AQUARIA AND CORAL REEFS 270

Discounting 272
Comparison of Methods for Calculating Sustainable Yields 272
Surplus production 272
Yield per recruit 273
Full demography 273
Adjustments based on recent results 274
Demographic rules of thumb 274

BOX 8.1 ADJUSTMENTS OF QUOTAS FOR THE MARTEN (MARTES AMERICANA) ACCORDING TO PREVIOUS RESULTS 275

Spatial and temporal comparisons 276

Sustainable Use Meets Biodiversity 276

CASE STUDY 8.1 OVEREXPLOITATION OF HIGHLY VULNERABLE SPECIES: RATIONAL MANAGEMENT AND RESTORATION OF SHARKS 278
CASE STUDY 8.2 THE BUSHMEAT CRISIS: APPROACHES FOR CONSERVATION 280
CASE STUDY 8.3 MANAGING NATURAL TROPICAL FORESTS FOR TIMBER: EXPERIENCES, CHALLENGES, AND OPPORTUNITIES 283

Summary 290
Questions for Discussion 291

CHAPTER 9
Species Invasions 293
Marjorie Wonham

What Are the Conservation Implications of Introduced Species? 294
What Are the Impacts of Invasions? 295
Population and community impacts 295

ESSAY 9.1 MAINTAINING AN OPEN MIND ON NONNATIVE SPECIES 296
Morphological and behavioral impacts 302
Genetic and evolutionary impacts 302
Ecosystem impacts 303
Measuring invader impacts 304

BOX 9.1 UNDERSTANDING THE IMPACTS OF NONNATIVE SPECIES 305

What Factors Determine Whether a Nonnative Species Becomes Invasive? 306
Propagule pressure 307

ESSAY 9.2 GLOBAL EXCHANGE 308
Invasions species characteristics 309
Invaded community characteristics 311

How Are Species Introduced? 314
Unintentional pathways 314
Intentional pathways 316
How Do We Manage Species Invasions? 316
Invasion control 316
Species-based control 316

BOX 9.2 USING MODELS TO IMPROVE CONTROL OF INTRODUCED RABBITS IN AUSTRALIA? 318

Invasion prevention 318

CASE STUDY 9.1 INVADERS IN AN INVASIBLE LAND: THE CASE OF THE NORTH AMERICAN BEAVER (CASTOR CANADENSIS) IN THE TIERRA DEL FUEGO–CAPE HORN REGION OF SOUTH AMERICA 321

CASE STUDY 9.2 TRACKING AQUATIC INVASIVE SPECIES 323

CASE STUDY 9.3 WHEN A BEAUTY TURNS BEAST 325

CASE STUDY 9.4 BIOLOGICAL CONTROL AS A CONSERVATION TOOL 327

Summary 330
Questions for Discussion 319

CHAPTER 10
Biological Impacts of Climate Change 333
Camille Parmesan and John Matthews

The Nature of Climate Change 334
Climate change through the ages 334
Human enhancement of the greenhouse effect 336
Mechanisms regulating the global energy budget 337

Current and Future Climate Change 338
Temperature and precipitation changes 338
Oceans: Change in sea level and circulation 340

Predicted Biological Impacts 342
Responses to extreme weather 342

Observed Biological Impacts of Climate Change 344
Detection and attribution 344
Evolutionary and morphological changes 344
Phenological shifts 345
Abundance changes and community reassembly 346
Range shifts 348
Sea level rise 349
Direct effects of carbon dioxide 350
Ecosystem process changes 350
The global picture: A synthesis of biological impacts 351

Conservation Implications of Climate Change 352
Extinctions 352
Responses to climate change by resource managers 354
Climate change and conservation policy 355
Responses to climate change at national and international levels 356

The role of government in climate change policy 356
Major themes in climate change negotiations 356
The future of climate change policy 359

CASE STUDY 10.1 CHALLENGES TO PREDICTING INDIRECT EFFECTS OF CLIMATE CHANGE 360
CASE STUDY 10.2 CLIMATE CHANGE, EXTINCTION, AND THE UNCERTAIN FUTURE OF A NEOTROPICAL CLOUD FOREST COMMUNITY 364
CASE STUDY 10.3 ADAPTING COASTAL LOWLANDS TO RISING SEAS 366
CASE STUDY 10.4 CLIMATE CHANGE AND COASTAL MIGRANT BIRDS 370

Summary 373
Questions for Discussion 374

CHAPTER 11
Conservation Genetics: The Use and Importance of Genetic Information 375
Kim T. Scribner, Gary K. Meffe, and Martha J. Groom

Genetic Variation: What Is It and Why Is It Important? 377
Variation within individuals 377
BOX 11.1 MEASURES OF GENETIC DIVERSITY 378
Variation among individuals 380
Variation among populations 381
Variation at the level of metapopulations 383

Why Is Genetic Diversity Important? 384

Forces that Affect Genetic Variation within Populations 385
The genetically effective population size \(N_e \) 385
ESSAY 11.1 COADAPTATION, LOCAL ADAPTATION, AND OUTBREEDING DEPRESSION 385

Mutation 387
Genetic drift 387
BOX 11.2 ESTIMATION OF EFFECTIVE POPULATION SIZE 388
Gene flow 390
Inbreeding depression 391
Outbreeding depression 392
Natural selection 393

Using Conservation Genetics to Inform Management 394
Time scales of concern 394

Identifying and Prioritizing Groups for Conservation 394
ESSAY 11.2 A ROSE IS A ROSE IS A ROSE 396
BOX 11.3 CALCULATION OF F-STATISTICS 397

Genetic Information and Design and Implementation of Breeding Strategies 401
Use of pedigrees 401
Estimation of degree of relatedness without knowledge of pedigree relationships 401
Analyses of Parentage and Systems of Mating 401
Forensics and Species or Population Identification 402
Individual Identification and Estimation of Population size 402
Understanding Effects of Population Exploitation on Levels of Genetic Diversity 402

Limitations of Using Genetics in Conservation Planning 403
CASE STUDY 11.1 GENETICS AND DEMOGRAPHY OF GRIZZLY BEAR POPULATIONS 404
CASE STUDY 11.2 USING GENETIC ANALYSES TO GUIDE MANAGEMENT OF PACIFIC SALMONIDS 407
CASE STUDY 11.3 SCAT: SINGING THE WILDLIFE CONSERVATION BLUES 411
Summary 414
Questions for Discussion 415

UNIT III
Approaches to Solving Conservation Problems 417

CHAPTER 12
Species and Landscape Approaches to Conservation 419
John B. Dunning Jr., Martha J. Groom, and H. Ronald Pulliam

Populations and How They Change 420
Mechanisms of population regulation 421
Special problems of very small populations 423
Source–sink concepts and their application to conservation 424
Metapopulation concepts, threshold responses, and conservation 427
ESSAY 12.1 METAPOPULATIONS, EXTINCTION THRESHOLDS, AND CONSERVATION 429
Modeling Approaches for Prediction and Conservation Planning 432
Population viability analysis 432
The value of hierarchical analysis for understanding population change 432
ESSAY 12.2 POPULATION VIABILITY ANALYSIS AND CONSERVATION DECISION MAKING 433
ESSAY 12.3 ECOLOGICALLY FUNCTIONAL POPULATIONS 435
Landscape models for conservation 440
Spatially explicit population models 442
Challenges and Opportunities of Conservation at the Landscape Scale 444
ESSAY 12.4 LANDSCAPE-LEVEL CONSERVATION FOR THE SEA 447
CASE STUDY 12.1 ASSESSING EXTINCTION RISK IN NEOTROPICAL MIGRATORY SONGBIRDS: THE NEED FOR LANDSCAPE-BASED DEMOGRAPHIC MODELS 449
CASE STUDY 12.2 LANDSCAPE CONSERVATION IN THE GREATER MADIDI LANDSCAPE, BOLIVIA: PLANNING FOR WILDLIFE ACROSS DIFFERENT SCALES AND JURISDICTIONS 453

CASE STUDY 12.3 PUTTING THE PIECES TOGETHER: PRESERVING CRANES AND THEIR HABITATS AROUND THE WORLD 459
Summary 464
Questions for Discussion 465

CHAPTER 13
Ecosystem Approaches to Conservation: Responses to a Complex World 467
Gary K. Meffe, Martha J. Groom, and C. Ronald Carroll

Key Elements of an Ecosystem Approach 468
Examples of ecosystem approaches 469
Ecosystem management 471
Using ecosystem approaches to meet the goals of the Convention on Biological Diversity 472
Biophysical Ecosystems as Appropriate Management Units 473
ESSAY 13.1 MARINE ECOSYSTEM-BASED MANAGEMENT: TRANSFORMING U.S. OCEAN POLICY 476
Understanding Ecosystem Dynamics and Resilience 480
Adaptive Management: Preparing for Change in Conservation Practice 481
Analytic approaches used in adaptive management 483
Should Ecosystem Approaches Mimic Natural Processes? 484
The Critical Role of Participatory Decision-Making Processes 485
BOX 13.1 USING FIRE AS A NATURAL PROCESS IN ECOSYSTEM MANAGEMENT 486
BOX 13.2 NATURAL COMMUNITY CONSERVATION PLANNING 488
CHAPTER 16
Sustainable Development 591
C. Ronald Carroll and Martha J. Groom

What Is Sustainable Development? 591
Sustainable “growth” is not equivalent to sustainable “development” 592
How are sustainable development projects structured? 593

How Successful Are Sustainable Development Projects at Conserving Biodiversity? 594

How Can We Best Promote Sustainability? 597

CASE STUDY 16.1 ECOTOURISM AND BIODIVERSITY CONSERVATION 599
CASE STUDY 16.2 THE CHOCÓ-ANDEAN CORRIDOR: SUSTAINING LIVELIHOODS AND PROTECTING BIODIVERSITY 605
CASE STUDY 16.3 CERTIFICATION AND THE COLLINS-ALMANOR FOREST 610
CASE STUDY 16.4 COMMUNITY EMPOWERMENT AND FOOD SECURITY: LESSONS FROM ZIMBABWE’S COMMUNAL MANAGEMENT PROGRAMME FOR INDIGENOUS RESOURCES (CAMPFIRE) 613
CASE STUDY 16.5 SEA TURTLE CONSERVATION AND THE YOLNGU PEOPLE OF NORTH EAST ARNHEM LAND, AUSTRALIA 616

Summary 622
Questions for Discussion 623

CHAPTER 17
The Integration of Conservation Science and Policy: The Pursuit of Knowledge Meets the Use of Knowledge 625
Deborah M. Brosnan and Martha J. Groom

The Need for Translational Scientists at the Interface of Science and Policy 626

The Interface between the Pursuit and Use of Scientific Knowledge in Conservation 627
Policy-relevant science is different from ecologically relevant science 627
Policy involves a diversity of professions 628
Knowing others’ concerns, constraints, and opportunities 628
Constraints and opportunities for conservationists 628
Necessary roles as experts and advocates for science 629
Conservation science can influence conservation policy decision 629
Scientists are not value free 629

Policymakers and the public respond to scientific information differently 629

What Is Conservation Policy? 630
The best available science: Quality and quantity of scientific information for conservation decisions 633
Scientific uncertainty and risks 634

ESSAY 17.1 CONSERVATION SCIENCE AND POLICY IN THE REAL WORLD: THE HEADWATERS AGREEMENT 635

Dealing with Uncertainty and Risk through Adaptive Management 637

ESSAY 17.2 COLLABORATING FOR CONSERVATION: USING Decision Analysis to Manage “FACTS” AND “VALUES” IN CONSERVATION DISPUTES 638
ESSAY 17.3 A POLICY PORTFOLIO APPROACH TO BIODIVERSITY PROTECTION ON PRIVATE LANDS 641

Being a Conservation Scientist in the Real World 643
Working with the policy process 643

Contributing to conservation policy as a conservation scientist 644

CASE STUDY 17.1 SHOULD THE SOUTHERN RESIDENT POPULATION OF ORCAS BE LISTED AS THREATENED OR ENDANGERED?: A SCIENTIFIC, LEGAL, OR POLICY DECISION? 645
CASE STUDY 17.2 ELEPHANT CONSERVATION IN SRI LANKA: INTEGRATING SCIENTIFIC INFORMATION TO GUIDE POLICY 649
CASE STUDY 17.3 MANAGEMENT OF SPOTTED OWLS: THE INTEGRATION OF SCIENCE, POLICY, POLITICS, AND LITIGATION 652

Summary 658
Questions for Discussion 659

CHAPTER 18
Meeting Conservation Challenges in the Twenty-First Century 661
Martha J. Groom, C. Ronald Carroll, and Gary K. Meffe

Countering the Impacts on Biodiversity from Poverty in Many Countries and Over-Consumption in a Few Countries 661

Working with Uncertainty in Ecological, Social, Economic, and Political Systems 664
Indicators needed to describe trends and guide policy 664

ESSAY 18.1 CONSERVATION BIOLOGY IN THE TWENTY-FIRST CENTURY 665
Research approaches needed to inform decision-making 667

ESSAY 18.2 INDICATORS: IT MATTERS WHAT WE MEASURE 669
How do we overcome uncertainties that hinder decision-making? 671
Responding to intensification of threats 672
Are Conservation Efforts Succeeding and How Can We Improve? 673
Enhancing conservation under the U.S. Endangered Species Act 674
Limited implementation and funding of conservation programs globally 675
Will we meet the 2010 goals of the Convention for Biological Diversity? 676
Improving assessment of conservation efforts 676
BOX 18.1 PROSPECTS FOR ACHIEVING THE 2010 GOALS OF THE CONVENTION FOR BIOLOGICAL DIVERSITY 677
Influencing People's Habits: Reducing Destructive Impacts 679
Making sustainable choices more attractive 680
ESSAY 18.3 THE IMPORTANCE OF PUBLIC EDUCATION FOR BIOLOGICAL CONSERVATION 681
Encouraging conservation through incentives 683
Fostering sustainable use 684
ESSAY 18.4 COUNTRYSIDE BIOGEOGRAPHY 685
Our Decisions Will Determine the Fate of Biodiversity 687
CASE STUDY 18.1 THE NATURE CONSERVANCY'S APPROACH TO MEASURING BIODIVERSITY STATUS AND THE EFFECTIVENESS OF CONSERVATION STRATEGIES 688
CASE STUDY 18.2 SUSTAINABLE URBANIZATION AND BIODIVERSITY 694
Summary 698
Questions for Discussion 699
Glossary 701
Bibliography 711
Index 761